

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	CDR-Stats 3.1.1 documentation

Welcome to CDR-Stats documentation!

	Version:	3.1

	Release:	3.1.1

	Date:	June 07, 2016

Contents:

	Getting Started
	Overview

	Dashboard

	Admin Panel

	Architecture

	Features

	Utility

	Installation
	Overview

	Install CDR-Stats

	Configure Postgresql for Remote Access

	CDR-Pusher Installation

	Configure Asterisk with CDR-Stats and CDR-Pusher

	Configure FreeSWITCH with CDR-Stats and CDR-Pusher

	Configure Kamailio with CDR-Stats and CDR-Pusher

	Configuration and Defaults
	General Configuration

	Country Reporting

	Configuration for Asterisk

	Realtime configuration for Asterisk

	Configuration for FreeSWITCH

	Realtime configuration for FreeSWITCH

	Resetting CDR Data

	Celery Configuration

	ACL Control

	Celery

	Troubleshooting

	User Guide

	PostgreSQL

	Developer doc

	API Reference

	Contributing

	Resources
	Getting Help

	Bug tracker

	Documentation

	Support

	License

	Frequently Asked Questions

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

Getting Started

	Web:	http://www.cdr-stats.org/

	Download:	http://www.cdr-stats.org/download/

	Source:	https://github.com/cdr-stats/cdr-stats/

	Keywords:	VoIP, Freeswitch, Asterisk, Django, Python, Call, Reporting, CDR

–

CDR-Stats is free and open source CDR [http://en.wikipedia.org/wiki/Call_detail_record] (Call Detail Record) mediation, rating, analysis
and reporting application for Freeswitch, Asterisk and other type of VoIP Switch.
It allows you to interrogate your CDR [http://en.wikipedia.org/wiki/Call_detail_record] to provide reports and statistics via a
simple to use, yet powerful, web interface.

It is based on the Django [http://djangoproject.com/] Python Framework, Celery [http://www.celeryproject.org/], Gevent [http://www.gevent.org/], PostgreSQL [http://www.postgresql.org/] and InfluxDB [http://influxdb.com/].

	Overview

	Dashboard

	Admin Panel

	Architecture

	Features

	Utility

Overview

CDR-Stats is an application that allows rating, browsing and analysing CDR [http://en.wikipedia.org/wiki/Call_detail_record].

Different reporting tools are provided:

	Dashboard: Overview of call activity

	Search CDR: Search, filter, display and export CDR

	Overview: Analyse call traffic by hour, day and month

	Daily Comparison: Compare call traffic day on day

	Country Report: Call statistics by country

	World Map: Call statistics overlaid on a world map

	Call Cost and Carrier Costs

	Mail daily aggregated reports

	Threat Control: Detect abnormal call patterns

	Destination Alerts: Unexpected destination alerts

CDR Stats uses PostgreSQL, a scalable, high performance database system used to
analyse large quantities of CDR data. PostgreSQL provides Materialized views
which make it perfect to build analytic application which do heavy aggregation
and recently PostgreSQL cames with Jsonb field which make it easy to store
custom data from variety of switch.

Out of the box, CDR-Stats supports Freeswitch, Asterisk, Kamailio, SipWise,
Veraz using connectors that get the CDRs and push them to centralized database.
Connectors any switch systems can be built.

For list of the last supported Switches, please refere to
http://www.cdr-stats.org/pricing/switch-connectors/

Dashboard

User Dashboard provides realtime monitoring of the most relevant metrics of
connected switches.

[image: _images/dashboard.png]

Admin Panel

The Admin Panel allows the administrators to configure the entire reporting
platform, import CDR in CSV format, configure users, switch connections and
automatic alarms.

[image: _images/admin_dashboard.png]

Architecture

CDR-Stats uses PostgreSQL as the underlying CDR store. PostgreSQL with
Materialized view allows querying and analysis of many millions of records
without noticeable loss of performance, and can easily be scaled as
demand increases.

Postgresql is used for managing CDR-Stats in terms of users and managing
the web framework, Django.

Celery, a task manager runs in the background, and monitors the CDR coming
into the system, and alerts the systems administrator when unusual behaviour
is discovered. What is determined as unusual behaviour is determined by the
administrator who can configure alerts for increases in dropped calls,
average length of calls, or calls to unusual destinations.

[image: _images/CDR-Stats-Architecture.png]
CDR-Stats works hand in hand with CDR-Pusher [https://github.com/cdr-stats/cdr-stats] which has been built to
create an totally independent, easy to install, high performance CDRs
Collector. CDR-Pusher is installed on your local Telcoms Switch
(e.g. Asterisk), the application will harvest CDRs in Realtime and push them
to a central CDR-Stats Database.

Features

Many features are provided on CDR-Stats, from browsing millions of CDRs,
call rating, providing efficient search facilities to build reporting such as
monthly reports and comparing call traffic with previous days.

	Telephony Reporting
	Leading open source switches Freeswitch, Asterisk,
supported as standard.

	Multi-switch
	Monitor traffic from many switches in one location

	Multi-tenant
	Sllowing many customers to monitor their own CDR
on one instance of CDR-Stats.

	Distributed
	Runs on one or more machines. Supports
broker clustering and HA. New workers can be
set up without central configuration.

	Fraud detection
	Visualise traffic which helps to identify unusual
patterns.

	Fraud Alert
	Send emails to the administrator when fraud are
or suspicious paterns occur

	Error Emails
	Can be configured to send emails to the
administrator if a tasks fails.

	Import CDR
	Import CDR files in custom format

	World Map view
	See where the traffic originates and terminates on
a Map

	Compare traffic
	See how your traffic evolves, and patterns change.

	Mail Reporting
	Send daily mail reports of telecoms traffic

	Realtime Reporting
	Traffic displayed in realtime

	Blacklist
	Blacklist Phone number patterns to receive alarms

	Geographic alerts
	Set alert if calls go to disallowed countries

	Call Rating
	Each call individually rated

Utility

CDR-Stats is a simple-to-use tool to provide easy rating and analysis of calls.
It is a recommended addition to telephony servers, whether it be a simple in-house
PBX or large capacity VoIP switch. It shows in in near realtime what calls are going
through, can detect errors and failures, and alert the systems administrator is
unexpected traffic is noted.

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

Installation

Contents:

	Overview
	Install requirements

	Running CDR-Stats manually

	Install CDR-Stats
	Download and Install CDR-Stats

	Config file - settings.py & settings_local.py

	Configure Postgresql for Remote Access
	2.1 First backup your conf files

	2.2 Allow TCP/IP socket

	2.3 Enable client authentication

	2.4 Restart PostgreSQL Server

	2.5 Setup firewall Iptables

	2.6 Test your setup

	CDR-Pusher Installation
	3.1 Install / Run

	3.2 Configuration file

	3.3 Deployment

	3.4 Configure CDR-Pusher

	3.5 Configure your Switch CDR with CDR-Pusher

	3.6 Restart Supervisord

	3.7 Troubleshooting

Specific configuration per switch:

	Configure Asterisk with CDR-Stats and CDR-Pusher

	Configure FreeSWITCH with CDR-Stats and CDR-Pusher

	Configure Kamailio with CDR-Stats and CDR-Pusher

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Installation

Overview

CDR-Stats is a web-based telecoms application for analysing, reporting and rating on CDR (Call Detail Records) for multiple tenants delivered from Asterisk, Freeswitch and other supported telecoms switches.

[image: ../_images/daily_compare_report.png]
CDR-Stats is built on Open Source Software where the core components are Django, PostgreSQL, Celery, Redis, Socket.IO, Bower and Bootstrap Framework. There are many more Python and Django dependencies needed but if you are not a developer, you might want to skip those details as CDR-Stats can simply be installed using a script which installs transparently and seamlessly, CDR-Stats and the stack for you.

Install requirements

The requirements files provides a way to create an environment where all
the dependencies needed for the CDR-Stats are installed.

To get started with CDR-Stats the following must be installed:

	python >= 2.7 (programming language)

	nginx - Http Server

	django Framework >= 1.7 (Python based Web framework)

	celery >= 3.0 (Asynchronous task queue/job queue based on distributed message passing)

	linaro_django_pagination (Utilities for creating robust pagination tools throughout a django application)

	django-uuidfield >= 0.2 (Provides a UUIDField for your Django models)

	kombu >= 1.0.2 (An AMQP - Advanced Message Queuing Protocol messaging framework for Python)

	python-dateutil >= 1.5 (Extensions to the standard datetime module)

	redis >= 2.2.2 (Redis Python Client)

	django-notification >= 0.1.3 (User notification management for the Django web framework)

	django-country-dialcode - Django reusable application to manage Dial code of Countries

and many more, please find a full list of our requirements to our requirements files:

	https://github.com/cdr-stats/cdr-stats/blob/develop/requirements/basic.txt

	https://github.com/cdr-stats/cdr-stats/blob/develop/requirements/django.txt

There is also 2 extra requirements files for developers and to run our tests:

	https://github.com/cdr-stats/cdr-stats/blob/develop/requirements/dev.txt

	https://github.com/cdr-stats/cdr-stats/blob/develop/requirements/test.txt

The requirements must be installed into a virtual environement so that the
dependencies of the application do not interfere with other applications on the
server. More information can be found about virtualenv at:
http://pypi.python.org/pypi/virtualenv

PIP is a tool for installing and managing Python packages, more information
about PIP : http://www.pip-installer.org/en/latest/index.html

Using PIP, you can easily install all the requirements:

$ pip install -r requirements/all.txt

Running CDR-Stats manually

Inside CDR-Stats directory you should run, the following:

$ python manage.py syncdb --noinput

$ python manage.py collectstatic

$ python manage.py migrate

$ python manage.py createsuperuser

$ python manage.py runserver

syncdb will create a database named test.db in database folder of the
CDR-Stats directory. CDR-Stats is configured to do this, but can be changed
by modifying settings.py where the DATABASES dictionary is constructed. there
is more information about this in the Django documentation.

collectstatic will fetch all necessary media files and put them into
static folder defined in the settings module.

migrate will applying database migration to update the database schemas of CDR-Stats to its latest version.

createsuperuser will create a super user, to access to the admin section of CDR-Stats.

runserver runs an embedded webserver to test the site.
By default it will run on http://localhost:8000. This is configurable and more
information about runserver is in Django documentation.

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Installation

Install CDR-Stats

Download and Install CDR-Stats

Our install script supports Debian 7.x and Debian 8.x 64 bit version, we recommend the latest version of Debian.

Install CDR-Stats Master branch:

This will copy and un the master install script:

cd /usr/src/ ; rm install-cdr-stats.sh ; wget --no-check-certificate https://raw.github.com/cdr-stats/cdr-stats/master/install/install-cdr-stats.sh -O install-cdr-stats.sh ; bash install-cdr-stats.sh

During the installation, a number of self explanatory questions will be asked, including the root username and password.

On completion CDR-Stats will be ready to use once it is configured to your requirements in settings_local.py as described in the next section, and the CDR-Pusher is installed, usually to your switch, to send CDR to CDR-Stats.

Config file - settings.py & settings_local.py

The main config file for CDR-Stats is located at /usr/share/cdrstats/cdr_stats/settings_local.py

Before importing CDR, there are some settings that need to be changed to suit your location.

Email Backend

Configure these settings to register to your SMTP server for sending outbound mail.

Allowed Hosts

Normally, this IP address will be configured correctly as part of the installation process, however if the IP address changes, or if you are accessing via another IP, e.g. port forwarding through a firewall or you use an FQDN, the additional IP addresses via which you access CDR-Stats will need to be added here enclosed in single ‘quotation’ marks and separated with a comma.

General

The general settings deal with how the dialled digits are treated in order to normalise them for matching to a rate.

PHONENUMBER_PREFIX_LIMIT_MIN & PHONENUMBER_PREFIX_LIMIT_MAX are used to determine how many digits are used to match against the dialcode prefix database, e.g:

PHONENUMBER_PREFIX_LIMIT_MIN = 2
PHONENUMBER_PREFIX_LIMIT_MAX = 5

If a phone number has less digits than PHONENUMBER_MIN_DIGITS it will be considered an extension:

PHONENUMBER_MIN_DIGITS = 6
PHONENUMBER_MAX_DIGITS = 9

If a phone number has more digits than PHONENUMBER_DIGITS_MIN but less than PHONE_DIGITS_MAX then the phone number will be considered as local or national call and the LOCAL_DIALCODE will be added:

LOCAL_DIALCODE = 1

Set the dialcode of your country (44 for UK, 1 for US):

PREFIX_TO_IGNORE = "+,0,00,000,0000,00000,011,55555,99999"

List of prefixes to ignore, these prefixes are removed from the phone number prior to analysis.

Country Examples

So for the USA, to cope with 10 or 11 digit dialling, PHONENUMBER_MAX_DIGITS would be set to 10, and LOCAL_DIALCODE set to 1. Thus 10 digit numbers would have a 1 added, but 11 digit numbers are left untouched.

In the UK, the number of significant digits is either 9 or 10 after the “0” trunk code. So to ensure that all UK numbers had 44 prefixed to them and the single leading 0 removed, the prefixes to ignore would include 0, the PHONENUMBER_MAX_DIGITS would be set to 10, and the LOCAL_DIALCODE would be 44.

In Spain, where there is no “0” trunk code, and the length of all numbers is 9, then the PHONENUMBER_MAX_DIGITS would be set to 9, and the LOCAL_DIALCODE set to 34.

When any changes are made to this file, then Celery should be restarted to apply the changes.

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Installation

Configure Postgresql for Remote Access

2.1 First backup your conf files

Backup postgresql.conf & pg_hba.conf:

cp /etc/postgresql/9.4/main/postgresql.conf /etc/postgresql/9.4/main/postgresql.conf.bkup
cp /etc/postgresql/9.4/main/pg_hba.conf /etc/postgresql/9.4/main/pg_hba.conf.bkup

2.2 Allow TCP/IP socket

Edit the PostgreSQL configuration file, using a text editor such as vi.

Configure PostgreSQL to listen for remote connections:

sed -i "s/#listen_addresses = 'localhost'/listen_addresses = '*'/" /etc/postgresql/9.4/main/postgresql.conf

2.3 Enable client authentication

Configure PostgreSQL to accept remote connections (from any host on your network):

cat >> /etc/postgresql/9.4/main/pg_hba.conf <<EOF
Accept all IPv4 connections
host all all <SWITCH_IP>/24 md5
EOF

Make sure you replace <SWITCH_IP>/24 with your actual network IP address range.

If you want to accept CDR from only from one IP address, then enter the IP in switch, followed by /32, e.g. <SWITCH_IP>/32

2.4 Restart PostgreSQL Server

Restart PostgreSQL for the changes to take effect:

/etc/init.d/postgresql restart

2.5 Setup firewall Iptables

Make sure iptables is not blocking communication, open port 5432:

iptables -A INPUT -p tcp -s 0/0 --sport 1024:65535 -d <SWICH_IP> --dport 5432 -m state --state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -p tcp -s <SWICH_IP> --sport 5432 -d 0/0 --dport 1024:65535 -m state --state ESTABLISHED -j ACCEPT

Restart firewall:

/etc/init.d/iptables restart

2.6 Test your setup

In order to test, you will need to install PostgreSQL client, on Debian you can install as follows:

apt-get install postgresql-client

For CentOS:

yum install postgresql

Use psql command from client system. Connect to remote server using IP address and login using vivek username and sales database, enter:

$ psql -h <POSTGRESQL_IP> -U USERNAME -d CDRPUSHER_DBNAME

Replace POSTGRESQL_IP, USERNAME and CDRPUSHER_DBNAME, with the one from your CDR-Stats server.

Check settings_local.py for the username and password.

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Installation

CDR-Pusher Installation

CDR-Pusher is a Go Application that will push your CDRs (Call Detail Record) from your Telco Switch (Asterisk, FreeSWITCH or other supported switch http://www.cdr-stats.org/pricing/switch-connectors/) to the centralized PostgreSQL Database CDR-Pusher on the CDR-Stats server.rebo

3.1 Install / Run

Install Golang dependencies (Debian/Ubuntu):

$ apt-get -y install mercurial git bzr bison
$ apt-get -y install bison

Install GVM to select which version of Golang you want to install:

$ bash < <(curl -s -S -L https://raw.githubusercontent.com/moovweb/gvm/master/binscripts/gvm-installer)
$ source /root/.gvm/scripts/gvm
$ gvm install go1.4.2 --binary
$ gvm use go1.4.2 --default

Make sure you are running by default Go version >= 1.4.2, check by typing the following:

$ go version

To install and run the cdr-pusher application, follow these steps:

$ mkdir /opt/app
$ cd /opt/app
$ git clone https://github.com/cdr-stats/cdr-pusher.git
$ cd cdr-pusher
$ export GOPATH=`pwd`
$ make build
$./bin/cdr-pusher

The config file cdr-pusher.yaml is installed at the following location: /etc/cdr-pusher.yaml

3.2 Configuration file

Config file /etc/cdr-pusher.yaml:

CDR FETCHING - SOURCE

storage_source_type: DB backend type where CDRs are stored
(accepted values: "sqlite3" and "mysql")
storage_source: "sqlite3"

db_file: specify the database path and name
db_file: "/usr/local/freeswitch/cdr.db"

Database DNS
Use this with Mysql
db_dns: ""

db_table: the DB table name
db_table: "cdr"

db_flag_field defines the table field that will be added/used to track the import
db_flag_field: "flag_imported"

max_fetch_batch: Max number of CDR to push in batch (value: 1-1000)
max_fetch_batch: 100

heartbeat: Frequency of check for new CDRs in seconds
heartbeat: 1

cdr_fields is list of fields that will be fetched (from SQLite3) and pushed (to PostgreSQL)
- if dest_field is callid, it will be used in riak as key to insert
cdr_fields:
 - orig_field: uuid
 dest_field: callid
 type_field: string
 - orig_field: caller_id_name
 dest_field: caller_id_name
 type_field: string
 - orig_field: caller_id_number
 dest_field: caller_id_number
 type_field: string
 - orig_field: destination_number
 dest_field: destination_number
 type_field: string
 - orig_field: hangup_cause_q850
 dest_field: hangup_cause_id
 type_field: int
 - orig_field: duration
 dest_field: duration
 type_field: int
 - orig_field: billsec
 dest_field: billsec
 type_field: int
 # - orig_field: account_code
 # dest_field: accountcode
 # type_field: string
 - orig_field: "datetime(start_stamp)"
 dest_field: starting_date
 type_field: date
 # - orig_field: "strftime('%s', answer_stamp)" # convert to epoch
 - orig_field: "datetime(answer_stamp)"
 dest_field: extradata
 type_field: jsonb
 - orig_field: "datetime(end_stamp)"
 dest_field: extradata
 type_field: jsonb

CDR PUSHING - DESTINATION

storage_dest_type defines where push the CDRs (accepted values: "postgres" or "riak")
storage_destination: "postgres"

Used when storage_dest_type = postgres
datasourcename: connect string to connect to PostgreSQL used by sql.Open
pg_datasourcename: "user=postgres password=password host=localhost port=5432 dbname=cdr-pusher sslmode=disable"

Used when storage_dest_type = postgres
pg_store_table: the DB table name to store CDRs in Postgres
table_destination: "cdr_import"

Used when storage_dest_type = riak
riak_connect: connect string to connect to Riak used by riak.ConnectClient
riak_connect: "127.0.0.1:8087"

Used when storage_dest_type = postgres
riak_bucket: the bucket name to store CDRs in Riak
riak_bucket: "cdr_import"

switch_ip: leave this empty to default to your external IP (accepted value: ""|"your IP")
switch_ip: ""

cdr_source_type: write the id of the cdr sources type
(accepted value: unknown: 0, csv: 1, api: 2, freeswitch: 3, asterisk: 4, yate: 5, kamailio: 6, opensips: 7, sipwise: 8, veraz: 9)
cdr_source_type: 0

SETTINGS FOR FAKE GENERATOR

fake_cdr will populate the SQLite database with fake CDRs for testing purposes (accepted value: "yes|no")
fake_cdr: "no"

fake_amount_cdr is the number of CDRs to generate into the SQLite database for testing (value: 1-1000)
this amount of CDRs will be created every second
fake_amount_cdr: 1000

3.3 Deployment

CDR-Pusher application aims to be run as Service, it can easily be run by Supervisord.

3.3.1 Install Supervisord

Some Linux distributions offer a version of Supervisor that is installable through the system package manager. These packages may include distribution-specific changes to Supervisor:

$ apt-get install supervisor

3.3.2 Configure CDR-Pusher with Supervisord

Create an Supervisor conf file for cdr-pusher:

$ vim /etc/supervisor/conf.d/cdr-pusher-prog.conf

A supervisor configuration could look as follow:

[program:cdr-pusher]
autostart=true
autorestart=true
startretries=10
startsecs = 5
directory = /opt/app/cdr-pusher/bin
command = /opt/app/cdr-pusher/bin/cdr-pusher
user = root
redirect_stderr = true
stdout_logfile = /var/log/cdr-pusher/cdr-pusher.log
stdout_logfile_maxbytes=50MB
stdout_logfile_backups=10

Make sure the director to store the logs is created, in this case you should create ‘/var/log/cdr-pusher’:

$ mkdir /var/log/cdr-pusher

3.3.4 Supervisord Manage

Supervisord provides 2 commands, supervisord and supervisorctl:

supervisord: Initialize Supervisord, run configed processes
supervisorctl stop programX: Stop process programX. programX is config name in [program:mypkg].
supervisorctl start programX: Run the process.
supervisorctl restart programX: Restart the process.
supervisorctl stop groupworker: Restart all processes in group groupworker
supervisorctl stop all: Stop all processes. Notes: start, restart and stop won't reload the latest configs.
supervisorctl reload: Reload the latest configs.
supervisorctl update: Reload all the processes where the config has changed.

3.3.5 Supervisord Service

You can also use supervisor using the supervisor service:

$ /etc/init.d/supervisor start

3.4 Configure CDR-Pusher

Edit /etc/cdr-pusher.yaml

Get started by configuring the CDR source, this is your original CDR backend, for instance on Asterisk this can be MySQL, SQlite or Postgresql.

For Mysql & PostgreSQL you will need to configure the DNS too: https://github.com/go-sql-driver/mysql

Some of the settings to configure:

storage_source_type: DB backend type where CDRs are stored
(accepted values: "sqlite3" and "mysql")
storage_source: "mysql"

Database DNS
db_dns: "root:password@/accounting"

Then configure the ‘CDR Pushing’ section, here you will need to define where the CDRs will go, this will ‘almost’ always be the ‘cdr-pusher’ database living on your CDR-Stats server.

Check your CDR-Stats installation, you should find the Database settings for cdr-pusher database in settings_local.py

Some of the settings to configure:

storage_dest_type defines where push the CDRs (accepted values: "postgres", "riak" or "both")
storage_destination: "postgres"

Used when storage_dest_type = postgres
pg_datasourcename: "user=postgres password=password host=localhost port=5432 dbname=cdr-pusher sslmode=disable"

3.5 Configure your Switch CDR with CDR-Pusher

You will need to configure CDR-Pusher and you Telco Switch to work together, for this we put some individual instructions for :

> Configure FreeSWITCH with CDR-Stats and CDR-Pusher - Configure FreeSWITCH with CDR-Stats and CDR-Pusher

> Configure Asterisk with CDR-Stats and CDR-Pusher - Configure Asterisk with CDR-Stats and CDR-Pusher

> Configure Kamailio with CDR-Stats and CDR-Pusher - Configure Kamailio with CDR-Stats and CDR-Pusher

3.6 Restart Supervisord

After changes in CDR-Pusher configuration you will need to restart supervisord,
you can do so with gently with:

/etc/init.d/supervisor stop
/etc/init.d/supervisor start

3.7 Troubleshooting

An easy way to verify that CDR-Stats is running smoothly is to look at the logs.

Find the import log activity on CDR-Stats at:

tail -f /var/log/cdr-stats/djcelery_error.log

Find the import log activity on CDR-Pusher at:

tail -f /var/log/cdr-pusher/cdr-pusher.log

Check out the CDR-Stats Database ‘import_cdr’ to see realtime import:

python manage.py dbshell --database=import_cdr

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Installation

Configure Asterisk with CDR-Stats and CDR-Pusher

Asterisk supports many backends to store CDRs: SQLite3, PostgreSQL, MySQL and
many more.

In this document, we will explain how to configure Asterisk to store CDRs in
SQLite3 or Mysql then configure CDR-Pusher to send the CDR to CDR-Stats. Sqlite3
is the one we will recommend as this is by far the easiest to setup.

Store Asterisk CDRs to SQLITE3

The cdr_sqlite module was deprecated and has been removed. Users of this
module should use the cdr_sqlite3_custom module instead.

If Asterisk is compiled from source, then providing that SQLite3 is installed,
then during make menuselect under Call Detail Recording, cdr_sqlite3_custom
can be selected for installation.

For those using Asterisk via RPMs such as in the popular free PBX system, then
something like yum install asterisk11-sqlite3.x86_64. Do yum search sqlite3
to find the correct module for your version of Asterisk.

There is only one config file for the cdr_sqlite3_custom.so module, this is
configured at /etc/asterisk/cdr_sqlite3_custom.conf and the default settings
are as follows:

;
; Mappings for custom config file
;
[master] ; currently, only file "master.db" is supported, with only one table at a time.
table => cdr
columns => calldate, clid, dcontext, channel, dstchannel, lastapp, lastdata,source, destination, duration, billsec, disposition, amaflags, accountcode, uniqueid, userfield, test
values => '${CDR(start)}','${CDR(clid)}','${CDR(dcontext)}','${CDR(channel)}','${CDR(dstchannel)}','${CDR(lastapp)}','${CDR(lastdata)}','${CDR(src)}','${CDR(dst)}','${CDR(duration,f)}','${CDR(billsec,f)}','${CDR(disposition)}','${CDR(amaflags)}','${CDR(accountcode)}','${CDR(uniqueid)}','${CDR(userfield)}','${CDR(test)}'

After installation, restart asterisk. When CDR are written, they will be found
at /var/log/asterisk/master.db.

To check that CDR are being written to the SQLite3 DB with the following:

$ sqlite3 /var/log/asterisk/master.db
$ SELECT * FROM cdr LIMIT 10;

The result will be:

SQLite version 3.6.20
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite>

For readability, type
.header on
.mode column
Then you can list your CDR with standard SQL commands, e.g.
select * from cdr;

CTRL-D exits the SQLite console

Store Asterisk CDRs to MySQL

There is only one config file for the cdr_mysql.so module, this is
configured at /etc/asterisk/cdr_mysql.conf and the default settings
are as follows:

;
; Note - if the database server is hosted on the same machine as the
; asterisk server, you can achieve a local Unix socket connection by
; setting hostname=localhost
;
; port and sock are both optional parameters. If hostname is specified
; and is not "localhost", then cdr_mysql will attempt to connect to the
; port specified or use the default port. If hostname is not specified
; or if hostname is "localhost", then cdr_mysql will attempt to connect
; to the socket file specified by sock or otherwise use the default socket
; file.
;
[global]
hostname=localhost
dbname=asteriskcdrdb
password=password
user=asteriskcdruser
table=cdr
;port=3306
;sock=/tmp/mysql.sock
;userfield=1

Enable the last option userfield if you wish to use SetCDRUserField.

Configure with your hostname, dbname, password, user and table.

After installation, restart asterisk.

To check that CDR are being written to the MySQL DB with the following:

$ mysql -uasteriskcdruser -pasteriskcdrdb asteriskcdrdb
$ SELECT * FROM cdr LIMIT 10;

The result will be:

Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4862
Server version: 5.5.44-0ubuntu0.12.04.1 (Ubuntu)

Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> select * from cdr LIMIT 10;
...
...

CTRL-D exits the MySQL console

Configure CDR-pusher to collect CDRs

Once your CDRs will be stored to a SQLite Database, you will have to install
CDR-Pusher on your Asterisk server. You can find instructions how to install
CDR-Pusher here: https://github.com/cdr-stats/cdr-pusher

To install Supervisor on CentOS 6 or RHEL6, the procedure is more complex,
here it’s how we do it:

$ yum -y install python-setuptools

$ easy_install supervisor

$ wget https://raw.githubusercontent.com/cdr-stats/cdr-stats/develop/install/supervisor/centos/supervisord.conf -O /etc/supervisord.conf

$ wget https://raw.githubusercontent.com/cdr-stats/cdr-stats/develop/install/supervisor/centos/supervisord -O /etc/init.d/supervisor

$ chmod +x /etc/init.d/supervisor

$ supervisord --version

$ /etc/init.d/supervisor stop ; sleep 2 ; /etc/init.d/supervisor start

Also make sure you have recent version of Git.

Check your git version with:

git $ version

If your git version <= 1.7.4, then you will need to install a recent version,
you can follow the instructions here how to install a recent Git on CentOS6
here: http://tecadmin.net/how-to-upgrade-git-version-1-7-10-on-centos-6/

After installation of CDR-Pusher you can find the configuration file at
‘/etc/cdr-pusher.yaml’. You will need to configure properly some settings in
order to connect CDR-pusher to your SQLite or MySQL CDR backend and to your
CDR-Stats server.

Configure CDR-Pusher for SQLite3

Here some of the settings you need to change to fetch SQLite CDR form Asterisk,
edit ‘/etc/cdr-pusher.yaml’:

storage_source_type: type to CDRs to push
storage_source: "sqlite3"

db_file: specify the database path and name
db_file: "/var/log/asterisk/master.db"

db_table: the DB table name
db_table: "cdr"

cdr_fields is list of fields that will be fetched (from SQLite3) and pushed (to PostgreSQL)
- if dest_field is callid, it will be used in riak as key to insert
cdr_fields:
 - orig_field: uniqueid
 dest_field: callid
 type_field: string
 - orig_field: "'' AS cidnum"
 dest_field: caller_id_number
 type_field: string
 - orig_field: clid
 dest_field: caller_id_name
 type_field: string
 - orig_field: destination
 dest_field: destination_number
 type_field: string
 - orig_field: "CASE WHEN disposition='ANSWER' THEN 16 WHEN disposition='ANSWERED' THEN 16 WHEN disposition='BUSY' THEN 17 WHEN disposition='NOANSWER' THEN 19 WHEN disposition='NO ANSWER' THEN 19 WHEN disposition='CANCEL' THEN 21 WHEN disposition='CANCELED' THEN 21 WHEN disposition='CONGESTION' THEN 34 WHEN disposition='CHANUNAVAIL' THEN 47 WHEN disposition='DONTCALL' THEN 21 WHEN disposition='TORTURE' THEN 21 WHEN disposition='INVALIDARGS' THEN 47 WHEN disposition='FAIL' THEN 41 WHEN disposition='FAILED' THEN 41 ELSE 41 END"
 dest_field: hangup_cause_id
 type_field: int
 - orig_field: CAST(duration AS INTEGER)
 dest_field: duration
 type_field: int
 - orig_field: CAST(billsec AS INTEGER)
 dest_field: billsec
 type_field: int
 - orig_field: "datetime(calldate)"
 dest_field: starting_date
 type_field: date
 - orig_field: accountcode
 dest_field: accountcode
 type_field: string
 - orig_field: channel
 dest_field: extradata
 type_field: jsonb
 - orig_field: lastapp
 dest_field: extradata
 type_field: jsonb
 - orig_field: dcontext
 dest_field: extradata
 type_field: jsonb

Configure CDR-Pusher for MySQL

Here some of the settings you need to change to fetch MySQL CDR from Asterisk,
edit ‘/etc/cdr-pusher.yaml’:

storage_source_type: type to CDRs to push
storage_source: "mysql"

db_file: specify the database path and name
db_file: ""

Database DNS
Use this with MySQL
db_dns: "username:password@/database"

db_table: the DB table name
db_table: "cdr"

cdr_fields is list of fields that will be fetched and pushed (to PostgreSQL)
- if dest_field is callid, it will be used in riak as key to insert
cdr_fields:
 - orig_field: uniqueid
 dest_field: callid
 type_field: string
 - orig_field: clid
 dest_field: caller_id_name
 type_field: string
 - orig_field: "'' AS cidnum"
 dest_field: caller_id_number
 type_field: string
 - orig_field: dst
 dest_field: destination_number
 type_field: string
 - orig_field: "CASE disposition WHEN 'ANSWER' THEN 16 WHEN 'ANSWERED' THEN 16 WHEN 'BUSY' THEN 17 WHEN 'NOANSWER' THEN 19 WHEN 'NO ANSWER' THEN 19 WHEN 'CANCEL' THEN 21 WHEN 'CANCELED' THEN 21 WHEN 'CONGESTION' THEN 34 WHEN 'CHANUNAVAIL' THEN 47 WHEN 'DONTCALL' THEN 21 WHEN 'TORTURE' THEN 21 WHEN 'INVALIDARGS' THEN 47 WHEN 'FAIL' THEN 41 WHEN 'FAILED' THEN 41 ELSE 41 END"
 dest_field: hangup_cause_id
 type_field: int
 - orig_field: duration
 dest_field: duration
 type_field: int
 - orig_field: billsec
 dest_field: billsec
 type_field: int
 - orig_field: accountcode
 dest_field: accountcode
 type_field: string
 - orig_field: calldate
 dest_field: starting_date
 type_field: date
 - orig_field: userfield
 dest_field: extradata
 type_field: jsonb
 - orig_field: dcontext
 dest_field: extradata
 type_field: jsonb
 - orig_field: channel
 dest_field: extradata
 type_field: jsonb
 - orig_field: lastapp
 dest_field: extradata
 type_field: jsonb
 - orig_field: lastdata
 dest_field: extradata
 type_field: jsonb

CDR-Pusher always needs a Primary Key to import CDRs, therefore if you use
MySQL, please ensure that you have a Primary Key in your cdr table as it
will not be there by default.

You can create a Primary Key with:

ALTER TABLE cdr ADD COLUMN id int(10) UNSIGNED PRIMARY KEY AUTO_INCREMENT FIRST;

Send CDRs from backend to the CDR-Stats Core DB

The application cdr-pusher will need your correct CDR-Stats server settings to
push CDRs properly to the core DB, you set this in ‘/etc/cdr-pusher.yaml’ by
changing:

pg_datasourcename: "user=postgres password=password host=localhost port=5432 dbname=cdr-pusher sslmode=disable"

Replace ‘postgres’, ‘password’ and ‘localhost’ by your CDR-Stats server
settings and make sure you configured Remote Access to PostgreSQL, this is
described in our documentation here Configure Postgresql for Remote Access.

You may need to configure these settings as well:

switch_ip: leave this empty to default to your external IP (accepted value: ""|"your IP")
switch_ip: ""

cdr_source_type: write the id of the cdr sources type
(accepted value: unknown: 0, csv: 1, api: 2, freeswitch: 3, asterisk: 4, yate: 5, kamailio: 6, opensips: 7, sipwise: 8, veraz: 9)
cdr_source_type: 4

Restart CDR-Pusher

After changes in ‘/etc/cdr-pusher.yaml’ CDR-pusher will need to be restarted,
do this with the following command:

$ /etc/init.d/supervisor stop
$ /etc/init.d/supervisor start

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Installation

Configure FreeSWITCH with CDR-Stats and CDR-Pusher

FreeSWITCH supports many backed to store CDRs, we will cover SQLite here.

Collect CDRs from SQLITE

FreeSWITCH mod_cdr_sqlite is used to locally store the CDRs, to configure CDR
SQLite backend in FreeSWITCH you can find instruction here:
https://wiki.freeswitch.org/wiki/Mod_cdr_sqlite

Once your CDRs will be stored to a SQLite Database, you will have to install
CDR-Pusher on your FreeSWITCH server. You can find instruction how to install
CDR-Pusher here: https://github.com/cdr-stats/cdr-stats

After installation of CDR-Pusher you can find the configuration file at
‘/etc/cdr-pusher.yaml’. You will need to configure properly some settings in
order to connect CDR-pusher to your SQLite CDR backend and to your CDR-Stats
server.

By tweaking the configuration of Mod_cdr_sqlite and CDR-Pusher you can define
custom fields that you want to import to CDR-stats.

Here an example of ‘cdr_sqlite.conf’ that show how custom fields can be
defined to store some specific CDR variables to your CDR backend:

<configuration name="cdr_sqlite.conf" description="SQLite CDR">
 <settings>
 <!-- SQLite database name (.db suffix will be automatically appended) -->
 <!-- <param name="db-name" value="cdr"/> -->
 <!-- CDR table name -->
 <!-- <param name="db-table" value="cdr"/> -->
 <!-- Log a-leg (a), b-leg (b) or both (ab) -->
 <param name="legs" value="a"/>
 <!-- Default template to use when inserting records -->
 <param name="default-template" value="example"/>
 <!-- This is like the info app but after the call is hung up -->
 <!--<param name="debug" value="true"/>-->
 </settings>
 <templates>
 <!-- Note that field order must match SQL table schema, otherwise insert will fail -->
 <template name="example">"${caller_id_name}","${caller_id_number}","${destination_number}","${context}","${start_stamp}","${answer_stamp}","${end_stamp}",${duration},${billsec},"${hangup_cause}", "${hangup_cause_q850}","${uuid}","${bleg_uuid}","${accountcode}"</template>
 </templates>
</configuration>

Configure CDR-pusher to collect CDRs

Here some of the settings you need to change to fetch CDR form Asterisk, edit
‘/etc/cdr-pusher.yaml’:

storage_source_type: DB backend type where CDRs are stored
(accepted values: "sqlite3" and "mysql")
storage_sourcestorage_source: "sqlite3"

db_file: specify the database path and name
db_file: "/usr/local/freeswitch/cdr.db"

cdr_fields is list of fields that will be fetched (from SQLite3) and pushed (to PostgreSQL)
- if dest_field is callid, it will be used in riak as key to insert
cdr_fields:
 - orig_field: uuid
 dest_field: callid
 type_field: string
 - orig_field: caller_id_name
 dest_field: caller_id_name
 type_field: string
 - orig_field: caller_id_number
 dest_field: caller_id_number
 type_field: string
 - orig_field: destination_number
 dest_field: destination_number
 type_field: string
 - orig_field: hangup_cause_q850
 dest_field: hangup_cause_id
 type_field: int
 - orig_field: duration
 dest_field: duration
 type_field: int
 - orig_field: billsec
 dest_field: billsec
 type_field: int
 # - orig_field: account_code
 # dest_field: accountcode
 # type_field: string
 - orig_field: "datetime(start_stamp)"
 dest_field: starting_date
 type_field: date
 # - orig_field: "strftime('%s', answer_stamp)" # convert to epoch
 - orig_field: "datetime(answer_stamp)"
 dest_field: extradata
 type_field: jsonb
 - orig_field: "datetime(end_stamp)"
 dest_field: extradata
 type_field: jsonb

Send CDRs from backend to the CDR-Stats Core DB

The application cdr-pusher will need your correct CDR-Stats server settings to
push CDRs properly to the core DB, you set this in ‘/etc/cdr-pusher.yaml’ by
changing:

pg_datasourcename: "user=postgres password=password host=localhost port=5432 dbname=cdr-pusher sslmode=disable"

Replace ‘postgres’, ‘password’ and ‘localhost’ by your CDR-Stats server
settings and make sure you configured Remote Access to PostgreSQL, this is
described in our documentation here Configure Postgresql for Remote Access.

You may want to configure properly those 2 settings also:

switch_ip: leave this empty to default to your external IP (accepted value: ""|"your IP")
switch_ip: ""

cdr_source_type: write the id of the cdr sources type
(accepted value: unknown: 0, csv: 1, api: 2, freeswitch: 3, asterisk: 4, yate: 5, kamailio: 6, opensips: 7, sipwise: 8, veraz: 9)
cdr_source_type: 3

Restart CDR-Pusher

After changes in ‘/etc/cdr-pusher.yaml’ CDR-pusher will need to be restarted,
do this with the following command:

$ /etc/init.d/supervisor stop
$ /etc/init.d/supervisor start

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Installation

Configure Kamailio with CDR-Stats and CDR-Pusher

In Kamailio, you can store easily your CDR using Mysql, using the ‘acc module’
(kamailio.org/docs/modules/4.0.x/modules/acc.html). You will need to configure
Kamailio to store CDRs to Mysql and afterwards you will have to install
CDR-Pusher on your Kamailio server to push those CDRs to the CDR-Stats server.

Collect CDRs from Kamailio MYSQL Database

Kamailio and module acc can help you storing your CDRs to a Mysql database.
Here you can find some of the SQL schema and procedure that will be needed to
achieve it http://siremis.asipto.com/install-accounting/

Simeris have some documentation on how to setup accounting services:
http://kb.asipto.com/siremis:install40x:accounting

You will end up with a Mysql cdr table similar to this one:

CREATE TABLE `cdrs` (
 `cdr_id` bigint(20) NOT NULL AUTO_INCREMENT,
 `src_username` varchar(64) NOT NULL DEFAULT '',
 `src_domain` varchar(128) NOT NULL DEFAULT '',
 `dst_username` varchar(64) NOT NULL DEFAULT '',
 `dst_domain` varchar(128) NOT NULL DEFAULT '',
 `dst_ousername` varchar(64) NOT NULL DEFAULT '',
 `call_start_time` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',
 `duration` int(10) unsigned NOT NULL DEFAULT '0',
 `sip_call_id` varchar(128) NOT NULL DEFAULT '',
 `sip_from_tag` varchar(128) NOT NULL DEFAULT '',
 `sip_to_tag` varchar(128) NOT NULL DEFAULT '',
 `src_ip` varchar(64) NOT NULL DEFAULT '',
 `cost` int(11) NOT NULL DEFAULT '0',
 `rated` int(11) NOT NULL DEFAULT '0',
 `created` datetime NOT NULL,
 PRIMARY KEY (`cdr_id`),
 UNIQUE KEY `uk_cft` (`sip_call_id`,`sip_from_tag`,`sip_to_tag`)
) ENGINE=InnoDB AUTO_INCREMENT=8 DEFAULT CHARSET=latin1;

You will have to install the stored procedure ‘kamailio_cdrs’ &
‘kamailio_rating’ and call them from your Kamailio config.

In order to register failed calls to missed_calls, you will need to set flag
‘FLT_ACCFAILED’ and ‘FLT_ACCMISSED’ as follow:

if (is_method("INVITE"))
{
setflag(FLT_ACC); # do accounting
 setflag(FLT_ACCFAILED); # -- this is added to record failed calls
 setflag(FLT_ACCMISSED);
}

Install Triggers to regroup CDRs

The triggers will push your new Kamailio CDRs to a new table collection_cdrs.
This table helps to merge both table entries ‘cdr and ‘missed_calls’, that way
we could send the CDRs easily from CDR-Pusher application.

Connect to your Kamailio Mysql Database and create the following table and
triggers:

DROP TABLE IF EXISTS `collection_cdrs`;

CREATE TABLE `collection_cdrs` (
 `id` bigint(20) NOT NULL auto_increment,
 `cdr_id` bigint(20) NOT NULL default '0',
 `src_username` varchar(64) NOT NULL default '',
 `src_domain` varchar(128) NOT NULL default '',
 `dst_username` varchar(64) NOT NULL default '',
 `dst_domain` varchar(128) NOT NULL default '',
 `dst_ousername` varchar(64) NOT NULL default '',
 `call_start_time` datetime NOT NULL default '0000-00-00 00:00:00',
 `duration` int(10) unsigned NOT NULL default '0',
 `sip_call_id` varchar(128) NOT NULL default '',
 `sip_from_tag` varchar(128) NOT NULL default '',
 `sip_to_tag` varchar(128) NOT NULL default '',
 `src_ip` varchar(64) NOT NULL default '',
 `cost` integer NOT NULL default '0',
 `rated` integer NOT NULL default '0',
 `sip_code` char(3) NOT NULL default '',
 `sip_reason` varchar(32) NOT NULL default '',
 `created` datetime NOT NULL,
 `flag_imported` integer NOT NULL default '0',
 PRIMARY KEY (`id`)
);

DELIMITER //
CREATE TRIGGER copy_cdrs
AFTER INSERT
 ON cdrs FOR EACH ROW
BEGIN
 INSERT INTO collection_cdrs SET
 cdr_id = NEW.cdr_id,
 src_username = NEW.src_username,
 src_domain = NEW.src_domain,
 dst_username = NEW.dst_username,
 dst_domain = NEW.dst_domain,
 dst_ousername = NEW.dst_ousername,
 call_start_time = NEW.call_start_time,
 duration = NEW.duration,
 sip_call_id = NEW.sip_call_id,
 sip_from_tag = NEW.sip_from_tag,
 sip_to_tag = NEW.sip_to_tag,
 src_ip = NEW.src_ip,
 cost = NEW.cost,
 rated = NEW.rated,
 sip_code = 200,
 sip_reason = ''
 ;
END; //
DELIMITER ;

DELIMITER //
CREATE TRIGGER copy_missed_calls
AFTER INSERT
 ON missed_calls FOR EACH ROW
BEGIN
 INSERT INTO collection_cdrs SET
 cdr_id = NEW.cdr_id,
 src_username = NEW.src_user,
 src_domain = NEW.src_domain,
 dst_username = NEW.dst_user,
 dst_domain = NEW.dst_domain,
 dst_ousername = NEW.dst_ouser,
 call_start_time = NEW.time,
 duration = 0,
 sip_call_id = NEW.callid,
 sip_from_tag = NEW.from_tag,
 sip_to_tag = NEW.to_tag,
 src_ip = NEW.src_ip,
 cost = 0,
 rated = 0,
 sip_code = NEW.sip_code,
 sip_reason = NEW.sip_reason
 ;
END; //
DELIMITER ;

Import previous CDRs and Missed Calls

If you were already collecting CDRs in Kamailio, you may want to import
the existing ones to the table ‘collection_cdrs’, you can do the following
with those SQL commands:

-- !!! Only do the following once !!!

-- import cdrs
INSERT collection_cdrs (cdr_id, src_username, src_domain, dst_username, dst_domain, dst_ousername, call_start_time, duration, sip_call_id, sip_from_tag, sip_to_tag, src_ip, cost, rated, sip_code, sip_reason) SELECT cdr_id, src_username, src_domain, dst_username, dst_domain, dst_ousername, call_start_time, duration, sip_call_id, sip_from_tag, sip_to_tag, src_ip, cost, rated, 200, '' FROM cdrs;

-- import missed_calls
INSERT collection_cdrs (cdr_id, src_username, src_domain, dst_username, dst_domain, dst_ousername, call_start_time, duration, sip_call_id, sip_from_tag, sip_to_tag, src_ip, cost, rated, sip_code, sip_reason) SELECT cdr_id, src_user, src_domain, dst_user, dst_domain, dst_ouser, time, 0, callid, from_tag, to_tag, src_ip, 0, 0, sip_code, sip_reason FROM missed_calls;

Install CDR-Pusher

Once your CDRs will be stored to a Mysql Database, you will have to install
CDR-Pusher on your Kamailio server. You can find instruction how to install
CDR-Pusher here: https://github.com/cdr-stats/cdr-stats

After installation of CDR-Pusher you can find the configuration file at
‘/etc/cdr-pusher.yaml’. You will need to configure properly some settings in
order to connect CDR-pusher to your Mysql CDR backend and to your CDR-Stats
server.

Configure CDR-pusher to collect CDRs

Here some of the settings you need to change to fetch CDR form Kamailio, edit
‘/etc/cdr-pusher.yaml’:

storage_source_type: DB backend type where CDRs are stored
(accepted values: "sqlite3" and "mysql")
storage_source: "mysql"

Database DNS
db_dns: "username:password@/database"

db_table: the DB table name
db_table: "collection_cdrs"

cdr_fields is list of fields that will be fetched (from SQLite3) and pushed (to PostgreSQL)
- if dest_field is callid, it will be used in riak as key to insert
cdr_fields:
 - orig_field: sip_call_id
 dest_field: callid
 type_field: string
 - orig_field: src_username
 dest_field: caller_id_number
 type_field: string
 - orig_field: src_username
 dest_field: caller_id_name
 type_field: string
 - orig_field: dst_username
 dest_field: destination_number
 type_field: string
 - orig_field: "CASE sip_code WHEN '400' THEN 41 WHEN '401' THEN 21 WHEN '402' THEN 21 WHEN '403' THEN 21 WHEN '404' THEN 1 WHEN '486' THEN 17 WHEN '408' THEN 18 WHEN '480' THEN 19 WHEN '603' THEN 21 WHEN '410' THEN 22 WHEN '483' THEN 25 WHEN '502' THEN 27 WHEN '484' THEN 28 WHEN '501' THEN 29 WHEN '503' THEN 38 WHEN '488' THEN 65 WHEN '504' THEN 102 ELSE 41 END"
 dest_field: hangup_cause_id
 type_field: int
 - orig_field: CONVERT(duration,UNSIGNED INTEGER)
 dest_field: duration
 type_field: int
 - orig_field: CONVERT(duration,UNSIGNED INTEGER)
 dest_field: billsec
 type_field: int
 - orig_field: "call_start_time"
 dest_field: starting_date
 type_field: date

Send CDRs from backend to the CDR-Stats Core DB

The application cdr-pusher will need your correct CDR-Stats server settings to
push CDRs properly to the core DB, you set this in ‘/etc/cdr-pusher.yaml’ by
changing:

pg_datasourcename: "user=postgres password=password host=localhost port=5432 dbname=cdr-pusher sslmode=disable"

Replace ‘postgres’, ‘password’ and ‘localhost’ by your CDR-Stats server
settings and make sure you configured Remote Access to PostgreSQL, this is
described in our documentation here Configure Postgresql for Remote Access.

You may want to configure properly those 2 settings also:

switch_ip: leave this empty to default to your external IP (accepted value: ""|"your IP")
switch_ip: ""

cdr_source_type: write the id of the cdr sources type
(accepted value: unknown: 0, csv: 1, api: 2, freeswitch: 3, asterisk: 4, yate: 5, kamailio: 6, opensips: 7, sipwise: 8, veraz: 9)
cdr_source_type: 6

Restart CDR-Pusher

After changes in ‘/etc/cdr-pusher.yaml’ CDR-pusher will need to be restarted,
do this with the following command:

/etc/init.d/supervisor stop
/etc/init.d/supervisor start

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

Configuration and Defaults

Contents:

	General Configuration
	Mail server

	Country Reporting
	1. Prefix Limits

	2. Phone Number Length

	3. Adding Country Code

	4. Prefixes to Ignore

	Examples

	Configuration for Asterisk
	Import configuration for Asterisk

	Realtime configuration for Asterisk

	Configuration for FreeSWITCH
	Import configuration for FreeSWITCH

	Realtime configuration for FreeSWITCH

	Resetting CDR Data
	1. Stop Celery

	2. Empty the CDR-Stats dbshell

	3. Flag the CDR records for reimport

	4. Start Celery

	5. Wait while the CDR are re-imported

	Celery Configuration
	After installing Broker (Redis or Rabbitmq)

	Launch celery/celerybeat in debug mode

	Running celeryd/celerybeat as a daemon (Debian/Ubuntu)

	Troubleshooting

	ACL Control
	Add Customer

	Group Permissions

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Configuration and Defaults

General Configuration

Some of the more important parts of the configuration module for the cdr_stats,
settings_local.py, are explained below.

APPLICATION_DIR now contains the full path of the project folder and can be
used elsewhere in the settings.py module so that the project may be moved
around the system without having to worry about changing any hard-coded paths:

import os.path
APPLICATION_DIR = os.path.dirname(globals()['__file__'])

Turns on debug mode allowing the browser user to see project settings and
temporary variables.

DEBUG = True

Sends all errors from the production server to the admin’s email address:

ADMINS = (('xyz', 'xyz@abc.com'))

Sets up the options required for Django to connect to your database engine:

DATABASES = {
 'default': {
 # Add 'postgresql_psycopg2','postgresql','mysql','sqlite3','oracle'
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'DATABASENAME',
 'USER': 'DB_USERNAME',
 'PASSWORD': 'DB_PASSWORD',
 'HOST': 'DB_HOSTNAME',
 'PORT': 'DB_PORT',
 'OPTIONS': {
 #Postgresql Autocommit
 'autocommit': True,
 }
 },
 'import_cdr': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'cdr-pusher',
 'USER': 'postgres',
 'PASSWORD': 'password',
 'HOST': 'localhost',
 'PORT': '5433',
 'OPTIONS': {
 'autocommit': True,
 }
 }
}

There are 2 database connections, ‘default’ is the main database of CDR-Stats
this contains all the tables. The second database ‘import_cdr’ is used to
import the CDRs from your switch. This database could be on another database
server but putting it on the CDR-Stats server is ideal.

CDR-Stats doesn’t pull CDRs from your switch, it’s the job of the switch to
push the CDRs to CDR-Stats.

A mechanism is required to get your CDRs to the ‘import_cdr’ database, to
assist with this, we created CDR-pusher project.
CDR-Pusher will usually be installed on your switch server, CDR-Pusher is a Go
application that can be extended, it could import CDRs from a different CDRs
Database (SQlite, PostgreSQL) and/or from CDR logs files.
For more info please visit https://github.com/cdr-stats/cdr-pusher

Tells Django where to find your media files such as images that the HTML
templates might use.

MEDIA_ROOT = os.path.join(APPLICATION_DIR, 'static')

ROOT_URLCONF = 'urls'

Tells Django to start finding URL matches at in the urls.py module in the
cdr_stats project folder.

TEMPLATE_DIRS = (os.path.join(APPLICATION_DIR, 'templates'),)

Tells Django where to find the HTML template files:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.admin',
 ...
 'cdr',
 'cdr_alert',
 ...
)

Tells Django which applications (custom and external) to use in the project.
The custom applications, cdr etc. are stored in the project folder along
with these custom applications.

Mail server

To configure the SMTP client so that reports and alerts are sent via email,
edit /usr/share/cdrstats/cdr_stats/settings_local.py, and identify the email section:

#EMAIL BACKEND
#=============
Email configuration
DEFAULT_FROM_EMAIL = 'CDR-Stats <cdr-...@localhost.com>'
EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
EMAIL_USE_TLS = True
EMAIL_HOST = 'smtp.gmail.com'
EMAIL_PORT = 587
EMAIL_HOST_USER = 'user...@gmail.com'
EMAIL_HOST_PASSWORD = 'password'
EMAIL_SUBJECT_PREFIX = '[CDR-Stats] '

Fill in the details to match your SMTP server. The above example is for Gmail.
When done, restart Celery and Apache.

To test that the email is working, from the command line type:

$ cd /usr/src/cdr-stats/
$ workon cdr-stats
$ python manage.py send_daily_report

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Configuration and Defaults

Country Reporting

CDR-Stats is able to identify the destination country of the call. This is a
useful fraud prevention measure, so that calls to unexpected destinations
are immediately apparent. Places that should not be called should be added
in the Blacklist in the admin section so that these destinations are
highlighted in the call data records.

However, in order to get accurate reporting, the call detail records have to
be in international format, e.g. in the USA, this means 11 digit numbers,
beginning with a 1, and for other countries, the numbers called should be
prefixed with the international dial code.

There is a facility for manipulating the dialled digits reported in the call
detail records, as well as identifying calls as internal calls. This is done
in the “general” section of /usr/share/cdrstats/cdr_stats/settings_local.py.

1. Prefix Limits

PREFIX_LIMIT_MIN & PREFIX_LIMIT_MAX are used to determine how many digits are
used to match against the dialcode prefix database, e.g:

PREFIX_LIMIT_MIN = 2
PREFIX_LIMIT_MAX = 5

2. Phone Number Length

If a phone number has less significant digits than PN_MIN_DIGITS it will be
considered an extension:

PN_MIN_DIGITS = 6
PN_MAX_DIGITS = 9

NB The Number of significant digits does not include national (0) or
international dialing codes (00 or 011), or where 9 is pressed for an outside
line.

3. Adding Country Code

If a phone number has more digits than PN_DIGITS_MIN but less than
PN_DIGITS_MAX then the phone number will be considered as local or national
call and the LOCAL_DIALCODE will be added:

LOCAL_DIALCODE = 1

Set the dialcode of your country e.g. 44 for UK, 1 for US

4. Prefixes to Ignore

List of prefixes to ignore, these prefixes are removed from the phone number
prior to analysis. In cases where customers dial 9 for an outside line, 9,
90 or 900 may need to be removed as well to ensure accurate reporting:

PREFIX_TO_IGNORE = "+,0,00,000,0000,00000,011,55555,99999"

Examples

So for the USA, to cope with 10 or 11 digit dialling, PN_MAX_DIGITS would be
set to 10, and LOCAL_DIALCODE set to 1. Thus 10 digit numbers would have a 1
added, but 11 digit numbers are left untouched.

In the UK, the number of significant digits is either 9 or 10 after the “0”
trunk code. So to ensure that all UK numbers had 44 prefixed to them and the
single leading 0 removed, the prefixes to ignore would include 0, the
PN_MAX_DIGITS would be set to 10, and the LOCAL_DIALCODE would be 44.

In Spain, where there is no “0” trunk code, and the length of all numbers is
9, then the PN_MAX_DIGITS would be set to 9, and the LOCAL_DIALCODE set to
34.

NB: After changing this file, then both celery and apache should be restarted.

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Configuration and Defaults

Configuration for Asterisk

Import configuration for Asterisk

Review your database settings and ensure the second database exists and that is configured correctly:

DATABASE SETTINGS
=================
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'cdrstats-billing',
 'USER': 'postgres',
 'PASSWORD': 'password',
 'HOST': 'localhost',
 'PORT': '5433',
 'OPTIONS': {
 # Postgresql Autocommit
 'autocommit': True,
 }
 },
 'import_cdr': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'cdr-pusher',
 'USER': 'postgres',
 'PASSWORD': 'password',
 'HOST': 'localhost',
 'PORT': '5433',
 'OPTIONS': {
 'autocommit': True,
 }
 }
}

You will need to push CDRs from the Asterisk CDR datastore to a CDR-Stats ‘import_cdr’ database. To help on this job we created CDR-Pusher, please visit the website and the instructions there to install and configure CDR-Stats correctly: https://github.com/cdr-stats/cdr-stats

Realtime configuration for Asterisk

The Asterisk Manager settings allow CDR-Stats to retrieve Realtime information to show the number of concurrent calls both in realtime and historically.

In Asterisk, add a new user in manager.conf, or one of its #include’s for CDR-Stats. Further information about Asterisk Manager can be found here : http://www.voip-info.org/wiki/view/Asterisk+config+manager.conf

The collection of realtime information is done via Collectd (https://collectd.org/) and InfluxDB (http://influxdb.com/.

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Configuration and Defaults

Configuration for FreeSWITCH

Import configuration for FreeSWITCH

Review your database settings and ensure the second database exists and that is configured correctly:

DATABASE SETTINGS
=================
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'cdrstats-billing',
 'USER': 'postgres',
 'PASSWORD': 'password',
 'HOST': 'localhost',
 'PORT': '5433',
 'OPTIONS': {
 # Postgresql Autocommit
 'autocommit': True,
 }
 },
 'import_cdr': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'cdr-pusher',
 'USER': 'postgres',
 'PASSWORD': 'password',
 'HOST': 'localhost',
 'PORT': '5433',
 'OPTIONS': {
 'autocommit': True,
 }
 }
}

You will need to push your CDRs from FreeSWITCH CDR datastore to a CDR-Stats ‘import_cdr’ database.
To help on this job we created CDR-Pusher, please visit the website and the instructions there to install and configure CDR-Stats correctly: https://github.com/cdr-stats/cdr-stats

Realtime configuration for FreeSWITCH

The FreeSWITCH Event Socket Library allow CDR-Stats to retrieve Realtime information to show the number of concurrent calls both in realtime and historically.

The collection of realtime information is done via Collectd (https://collectd.org/) and InfluxDB (http://influxdb.com/.

CDR-Stats can get CDR from both Freeswitch and Asterisk, or a combination of both. Other Telco Switches are supported, please contact us for further information.

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Configuration and Defaults

Resetting CDR Data

Sometimes, some experimentation is required to get the optimum settings for
country reporting, to achieve this the data can be removed from CDR-Stats and
re-imported from the CDR data store correctly.

1. Stop Celery

Stop CDR-Stats celery:

/etc/init.d/cdr-stats-celeryd stop

2. Empty the CDR-Stats dbshell

Enter in the virtualenv and launch dbshell the following commands:

$ workon cdr-stats
$ cd /usr/share/cdrstats/
$ python manage.py dbshell

Now you are connected on PostgreSQL cli, this is the internal database of
CDR-Stats.

The following command will delete all the CDRs, make sure you know what are you
doing here and that your CDRs are backed in the upstream CDR data store.

$ DELETE FROM voip_cdr;

CTRL-D exits the console.

3. Flag the CDR records for reimport

Enter in the virtualenv and launch dbshell the following commands:

$ workon cdr-stats
$ cd /usr/share/cdrstats/
$ python manage.py dbshell --database=import_cdr

Enter the postgresql password found in settings_local_py conf file.

Now you are connected on PostgreSQL cli, you can flag CDRs for reimport:

$ UPDATE cdr_import SET imported=FALSE;

CTRL-D exits the console.

4. Start Celery

Start CDR-Stats celery:

/etc/init.d/cdr-stats-celeryd start

5. Wait while the CDR are re-imported

Go to the diagnostic page to check if CDR-Stats is correctly configured and if
data is being imported.

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Configuration and Defaults

Celery Configuration

After installing Broker (Redis or Rabbitmq)

1. Redis Settings

This is a configuration example for Redis.

Redis Settings
CARROT_BACKEND = "ghettoq.taproot.Redis"

BROKER_HOST = "localhost" # Maps to redis host.
BROKER_PORT = 6379 # Maps to redis port.
BROKER_VHOST = "0" # Maps to database number.

CELERY_RESULT_BACKEND = "redis"
REDIS_HOST = "localhost"
REDIS_PORT = 6379
REDIS_DB = 0
#REDIS_CONNECT_RETRY = True

2. Rabbitmq Settings

This is a configuration example for Rabbitmq.

BROKER_HOST = "localhost"
BROKER_PORT = 5672
BROKER_USER = "root"
BROKER_PASSWORD = "root"
BROKER_VHOST = "localhost"

CELERY_RESULT_BACKEND = "amqp"

Launch celery/celerybeat in debug mode

To run celeryd

$ python manage.py celeryd -E -l debug

To run celerybeat

$ python manage.py celerybeat --schedule=/var/run/celerybeat-schedule

To run both

$ python manage.py celeryd -E -B -l debug

Running celeryd/celerybeat as a daemon (Debian/Ubuntu)

To configure celeryd as a daemon, it is necessary to configure the location of celeryconfig

$ cd install/celery-init/etc/default/

	Open celeryd in text editor & change the following variables

Configuration file: /etc/default/celeryd

Init script: celeryd [https://github.com/cdr-stats/cdr-stats/raw/master/install/celery-init/etc/init.d/celeryd].

Usage : /etc/init.d/celeryd {start|stop|force-reload|restart|try-restart|status}:

Where to chdir at start
CELERYD_CHDIR="/path/to/cdr-stats/"

Path to celeryd
CELERYD="/path/to/cdr-stats/manage.py celeryd"

Extra arguments to celeryd
CELERYD_OPTS="--time-limit=300"

Name of the celery config module.
CELERY_CONFIG_MODULE="celeryconfig"

Extra Available options
%n will be replaced with the nodename.
Full path to the PID file. Default is /var/run/celeryd.pid.
CELERYD_PID_FILE="/var/run/celery/%n.pid"

Full path to the celeryd log file. Default is /var/log/celeryd.log
CELERYD_LOG_FILE="/var/log/celery/%n.log"

User/Group to run celeryd as. Default is current user.
Workers should run as an unprivileged user.
CELERYD_USER="celery"
CELERYD_GROUP="celery"

	Open celeryd (for periodic task) in text editor & add the following variables

Configuration file: /etc/default/celerybeat or /etc/default/celeryd

Init script: celerybeat [https://github.com/cdr-stats/cdr-stats/raw/master/install/celery-init/etc/init.d/celerybeat]

Usage: /etc/init.d/celerybeat {start|stop|force-reload|restart|try-restart|status}:

Path to celerybeat
CELERYBEAT="/path/to/cdr-stats/manage.py celerybeat"

Extra arguments to celerybeat
CELERYBEAT_OPTS="--schedule=/var/run/celerybeat-schedule"

	Copy the configuration file & init scripts to /etc dir:

$ cp etc/default/celeryd /etc/default/

$ cp etc/init.d/celeryd /etc/init.d/

$ cp etc/init.d/celerybeat /etc/init.d/

	Run/Start or Stop celery as a daemon:

$ /etc/init.d/celeryd start or stop

$ /etc/init.d/celerybeat start or stop

Troubleshooting

If celeryd will not start as a daemon, try running it in verbose mode:

$ sh -x /etc/init.d/celeryd start

$ sh -x /etc/init.d/celerybeat start

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Configuration and Defaults

ACL Control

One of the benefits of CDR-Stats is ACL access, allowing numerous people to
access CDR-Stats each viewing their own CDR with permissions assigned to allow
viewing different parts of the interface.

Add Customer

To add a new user, enter the admin screen and Add Customer. Enter a username
and password, (twice for authentication), optionally add address details, then
enter the accountcode of the customer which corresponds to the accountcode
that is delivered in the CDR. When done, click save, and the customer details
will be saved and the page reloaded and now displays the user permissions
available.

Permissions can be added individually by selecting the permission and then
pressing the right arrow to move the permission from the left field to the
right field. When done, click save. The permissions to assign to the user are
those beginning with user_profile and cdr_alert.

Group Permissions

When you have many customers who are all to have the same permissions, you
can add a group, assign the group the desired permissions, then add the
customer to the group.

From the admin screens, Click add group, give it a name, assign permissions
then save. Finally edit the customer, select the groups to which the customer
will belong, then click save. The customer will then inherit permissions from
their group.

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

Celery

Celery Installation

Celery

Celery is an asynchronous task queue/job queue based on distributed message
passing. It is focused on real-time operation, but supports scheduling as well.

You can install Celery either via the Python Package Index (PyPI) or from source:

$ pip install celery

Downloading and installing from source

To Download the latest version click here [http://pypi.python.org/pypi/celery/].

You can install it by doing the following:

$ tar xvfz celery-X.X.X.tar.gz

$ cd celery-X.X.X

$ python setup.py build

$ python setup.py install # as root

Using the development version

You can clone the repository by doing the following:

$ git clone git://github.com/ask/celery.git

	Celery Configuration
	After installing Broker (Redis or Rabbitmq)

	Launch celery/celerybeat in debug mode

	Running celeryd/celerybeat as a daemon (Debian/Ubuntu)

	Troubleshooting

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Configuration and Defaults

Celery Configuration

After installing Broker (Redis or Rabbitmq)

1. Redis Settings

This is a configuration example for Redis.

Redis Settings
CARROT_BACKEND = "ghettoq.taproot.Redis"

BROKER_HOST = "localhost" # Maps to redis host.
BROKER_PORT = 6379 # Maps to redis port.
BROKER_VHOST = "0" # Maps to database number.

CELERY_RESULT_BACKEND = "redis"
REDIS_HOST = "localhost"
REDIS_PORT = 6379
REDIS_DB = 0
#REDIS_CONNECT_RETRY = True

2. Rabbitmq Settings

This is a configuration example for Rabbitmq.

BROKER_HOST = "localhost"
BROKER_PORT = 5672
BROKER_USER = "root"
BROKER_PASSWORD = "root"
BROKER_VHOST = "localhost"

CELERY_RESULT_BACKEND = "amqp"

Launch celery/celerybeat in debug mode

To run celeryd

$ python manage.py celeryd -E -l debug

To run celerybeat

$ python manage.py celerybeat --schedule=/var/run/celerybeat-schedule

To run both

$ python manage.py celeryd -E -B -l debug

Running celeryd/celerybeat as a daemon (Debian/Ubuntu)

To configure celeryd as a daemon, it is necessary to configure the location of celeryconfig

$ cd install/celery-init/etc/default/

	Open celeryd in text editor & change the following variables

Configuration file: /etc/default/celeryd

Init script: celeryd [https://github.com/cdr-stats/cdr-stats/raw/master/install/celery-init/etc/init.d/celeryd].

Usage : /etc/init.d/celeryd {start|stop|force-reload|restart|try-restart|status}:

Where to chdir at start
CELERYD_CHDIR="/path/to/cdr-stats/"

Path to celeryd
CELERYD="/path/to/cdr-stats/manage.py celeryd"

Extra arguments to celeryd
CELERYD_OPTS="--time-limit=300"

Name of the celery config module.
CELERY_CONFIG_MODULE="celeryconfig"

Extra Available options
%n will be replaced with the nodename.
Full path to the PID file. Default is /var/run/celeryd.pid.
CELERYD_PID_FILE="/var/run/celery/%n.pid"

Full path to the celeryd log file. Default is /var/log/celeryd.log
CELERYD_LOG_FILE="/var/log/celery/%n.log"

User/Group to run celeryd as. Default is current user.
Workers should run as an unprivileged user.
CELERYD_USER="celery"
CELERYD_GROUP="celery"

	Open celeryd (for periodic task) in text editor & add the following variables

Configuration file: /etc/default/celerybeat or /etc/default/celeryd

Init script: celerybeat [https://github.com/cdr-stats/cdr-stats/raw/master/install/celery-init/etc/init.d/celerybeat]

Usage: /etc/init.d/celerybeat {start|stop|force-reload|restart|try-restart|status}:

Path to celerybeat
CELERYBEAT="/path/to/cdr-stats/manage.py celerybeat"

Extra arguments to celerybeat
CELERYBEAT_OPTS="--schedule=/var/run/celerybeat-schedule"

	Copy the configuration file & init scripts to /etc dir:

$ cp etc/default/celeryd /etc/default/

$ cp etc/init.d/celeryd /etc/init.d/

$ cp etc/init.d/celerybeat /etc/init.d/

	Run/Start or Stop celery as a daemon:

$ /etc/init.d/celeryd start or stop

$ /etc/init.d/celerybeat start or stop

Troubleshooting

If celeryd will not start as a daemon, try running it in verbose mode:

$ sh -x /etc/init.d/celeryd start

$ sh -x /etc/init.d/celerybeat start

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

Troubleshooting

	Where to find the log files

	Run in debug mode

	Celerymon

Where to find the log files

All the logs are centralized into one single directory /var/log/cdr-stats/

cdr-stats.log : All the logger events from Django

cdr-stats-db.log : This contains all the Database queries performed by the UI

gunicorn_cdr_stats.log : All the logger events from Gunicorn

djcelery_error.log : This contains celery activity

djcelerybeat_error.log : This contains celerybeat activity

Run in debug mode

Make sure services are stopped first:

$ /etc/init.d/supervisor stop

Then run in debug mode:

$ workon cdr-stats
$ cd /usr/share/cdrstats/
$ python manage.py celeryd -EB --loglevel=DEBUG

Celerymon

	https://github.com/ask/celerymon

Running the monitor :

Start celery with the –events option on, so celery sends events for celerymon to capture:

$ workon cdr-stats
$ cd /usr/share/cdrstats/
$ python manage.py celeryd -E

Run the monitor server:

$ workon cdr-stats
$ cd /usr/share/cdrstats/
$ python manage.py celerymon

However, in production the monitor is best run in the background as a daemon:

$ workon cdr-stats
$ cd /usr/share/cdrstats/
$ python manage.py celerymon --detach

For a complete listing of the command line arguments available, with a short description, use the help command:

$ workon cdr-stats
$ cd /usr/share/cdrstats/
$ python manage.py help celerymon

Visit the webserver celerymon stats by going to: http://localhost:8989

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

User Guide

Overview

CDR-Stats is a web based application built on a Django Web framework which uses PostgreSQL as the CDR data store.

Celery (http://celeryproject.org/) is an asynchronous task queue/job queue based on distributed message.
It is used to build the backend system to monitor CDR, detect unusual activity, and react by sending an alert email.

CDR Stats Management Features

	CDR Mediation

	CDR Rating

	Multi-tenant design that allows call detail records from multiple switches or PBX systems.

	Custom alarm triggers can be set to email the administrator for a range of conditions including unusual average call durations, failed calls, and unexpected destinations called.

	Graphical tools help detect unusual call patterns which may indicate suspicious or fraudulent activity.

	Import Call Detail Records in CSV format

	Configure Switches for import

	Create Customer and assign accountcode

	Configure alert to detect unsual increase/decrease of Traffic

CDR Stats Customer Portal Features

	Password management

	Call Details Record

	Monthly, Daily, Hourly Call reporting

	Impact Reporting

	Country Reporting

	Realtime Reporting of calls in progress

	View Fraudulent Calls

	Concurrent Call Statistic

	Configure Mail Reporting

	Top 10 destination Traffic

	Export to CSV

	Automated daily reporting.

	Call cost reports

How to use CDR-Stats

CDR-Stats has two main areas, the admin screen and the customer portal. The admin and customer areas
are described in detail in the following pages.

CDR-Stats has been designed to be responsive, that is to say the the layout changes depending on the
size and resolution of the browser viewing the pages.

	Admin Panel
	Dashboard

	CDR Manual Import / Export

	Alarm

	Alarm-report

	Blacklist

	Whitelist

	Alert-remove-prefix

	Switch

	HangupCause

	CDR View

	User Panel
	Index

	Dashboard

	CDR-View

	CDR-Overview

	CDR-Hourly-Report

	CDR-Country-Report

	Mail-Report

	Concurrent-call-report

	Realtime-Report

	World Map Report

	Alert Settings

	Alert Report

	Destination Control

	Diagnostic CDR-Stats

	Rates

	Call Simulator

	Daily report of Billed call

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	User Guide

Admin Panel

The Admin section allows you to create administrators who have access the admin screens. Levels of
access can be set.

The Admin UI is located at http://localhost:8000/admin/

	Dashboard

	CDR Manual Import / Export

	Alarm

	Alarm-report

	Blacklist

	Whitelist

	Alert-remove-prefix

	Switch

	HangupCause

	CDR View

Dashboard

Dashboard page for the admin interface after successful login with superuser credentials

[image: ../_images/admin_dashboard1.png]

CDR Manual Import / Export

There is a tool in CDR-Stats to manually import CDRs from CSV, JSON, Excel & YAML.
The first line of the import file should contain the following header names “switch,cdr_source_type,callid,caller_id_number,caller_id_name,destination_number,dialcode,state,channel,starting_date,duration,billsec,progresssec,answersec,waitsec,hangup_cause_id,hangup_cause,direction,country_code,accountcode,buy_rate,buy_cost,sell_rate,sell_cost,extradata”.

Example of a CDR csv file to import:

switch,cdr_source_type,callid,caller_id_number,caller_id_name,destination_number,dialcode,state,channel,starting_date,duration,billsec,progresssec,answersec,waitsec,hangup_cause_id,hangup_cause,direction,country_code,accountcode,buy_rate,buy_cost,sell_rate,sell_cost,extradata
127.0.0.1,1,96aa82fe-7bd1-11e5-a230-5c514f6a0f72,904151440,CallerIDName,+34798400122,34,,,2015-10-21 12:13:10,55,50,,,,16,,1,,1000,,,,,{}
127.0.0.1,1,c9135e4a-7bd1-11e5-a230-5c514f6a0f72,904234320,CallerIDName,+34798401111,34,,,2015-10-21 12:33:15,15,10,,,,16,,1,,1000,,,,,{}
127.0.0.1,1,cfaf8b56-7bd1-11e5-a230-5c514f6a0f72,901110380,CallerIDName,+34650104877,34,,,2015-10-21 12:53:16,41,34,,,,16,,1,,1000,,,,,{}
127.0.0.1,1,3c64a168-7bd2-11e5-a230-5c514f6a0f72,904234320,CallerIDName,+34798401111,34,,,2015-10-21 12:53:16,16,11,,,,16,,1,,1000,,,,,{}
127.0.0.1,1,41b20dd9-7bd2-11e5-a230-5c514f6a0f72,904231111,CallerIDName,+34650104877,34,,,2015-10-21 12:53:16,8,5,,,,16,,1,,1000,,,,,{}

Note:

- cdr_source_type is an integer to define from where the CDR comes from (UNKNOWN = 0, CSV = 1, API = 2, FREESWITCH = 3, ASTERISK = 4, YATE = 5, KAMAILIO = 6, OPENSIPS = 7, SIPWISE = 8, VERAZ = 9)

- extradata is a JSON field, if empty you have to set it as `{}`

From CDR Import admin page, you will also be able to export your CDRs to CSV, JSON, HTML, ODS, Excel & YAML.

URL:

	http://localhost:8000/admin/import_cdr/cdrimport/import/

	http://localhost:8000/admin/import_cdr/cdrimport/export/

[image: ../_images/import-cdr.png]
[image: ../_images/import-cdr-confirmation.png]

Alarm

The alarm list will be displayed from the following URL. You can add a new
alarm by clicking Add alarm and adding the name of the alarm and its
description, Also from the alarm list, click on the alarm that you want
to update.

URL:

	http://localhost:8000/admin/cdr_alert/alarm/

[image: ../_images/alarm_list.png]
To Add/Update alarm

URL:

	http://localhost:8000/admin/cdr_alert/alarm/add/

	http://localhost:8000/admin/cdr_alert/alarm/1/

[image: ../_images/add_alarm.png]

Alarm-report

The alarmreport will be displayed from the following URL.

URL:

	http://localhost:8000/admin/cdr_alert/alarmreport/

[image: ../_images/alarm_report_list.png]
To Add/Update alarmreport

URL:

	http://localhost:8000/admin/cdr_alert/alarmreport/add/

	http://localhost:8000/admin/cdr_alert/alarmreport/1/

[image: ../_images/alarm_report.png]

Blacklist

The blacklist will be displayed from the following URL. You can add a new
blacklist by clicking Blacklist by country and selecting the country name and its
prefixes, Also from the blacklist, click on the blacklist that you want
to update.

URL:

	http://localhost:8000/admin/cdr_alert/blacklist/

[image: ../_images/blacklist_prefix_list.png]
[image: ../_images/add_prefix_into_blacklist.png]

Whitelist

The whitelist will be displayed from the following URL. You can add a new
Whitelist by clicking Whitelist by country and selecting the country name and its
prefixes, Also from the whitelist, click on the blacklist that you want
to update.

URL:

	http://localhost:8000/admin/cdr_alert/whitelist/

[image: ../_images/whitelist_prefix_list.png]
[image: ../_images/add_prefix_into_whitelist.png]

Alert-remove-prefix

The alert remove prefix will be displayed from the following URL. You can add a new
remove prefix by clicking Add alert remove prefix and selecting the remove prefix,
Also from the alert remove prefix, click on the remove prefix that you want to update.

The Admin UI is located at http://localhost:8000/

URL:

	http://localhost:8000/admin/cdr_alert/alertremoveprefix/

[image: ../_images/alert_remove_prefix_list.png]
To Add/Update alert-remove prefix

URL:

	http://localhost:8000/admin/cdr_alert/alertremoveprefix/add/

	http://localhost:8000/admin/cdr_alert/alertremoveprefix/1/

[image: ../_images/add_alert_remove_prefix.png]

Switch

URL:

	http://localhost:8000/admin/cdr/switch/

[image: ../_images/switch_list.png]

HangupCause

URL:

	http://localhost:8000/admin/cdr/hangupcause/

[image: ../_images/hangup_cause_list.png]

CDR View

URL:

	http://localhost:8000/admin/cdr/switch/cdr_view/

[image: ../_images/admin_cdr_view.png]

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	User Guide

User Panel

The User Interface is the core part of CDR-Stats, this is the one that the
users will use to get reporting and take advantage of CDR-Stats capabilities
and features.

The User UI is located at http://localhost:8000/

	Index

	Dashboard

	CDR-View

	CDR-Overview

	CDR-Hourly-Report

	CDR-Country-Report

	Mail-Report

	Concurrent-call-report

	Realtime-Report

	World Map Report

	Alert Settings

	Alert Report

	Destination Control

	Diagnostic CDR-Stats

	Rates

	Call Simulator

	Daily report of Billed call

Index

Index page for the customer interface after successful login with user credentials

[image: ../_images/index.png]

Dashboard

The dashboard displays a graphical representation of the last 24 hours calls, call status statistics
and calls by country, either agregrated for all switches, or selectable by switch.

URL:

	http://localhost:8000/dashboard/

[image: ../_images/dashboard1.png]

CDR-View

Call detail records listed in table format which can be exported to CSV file.

Advanced Search allows further filtering and searching on a range of criteria

The Report by Day shows a graphical illustration of the calls, minutes and average call time.

URL:

	http://localhost:8000/cdr_view/

[image: ../_images/cdr_view.png]

CDR-Overview

A pictorial view of calls with call-count or call-duration from any date or date-range

URL:

	http://localhost:8000/cdr_overview/

[image: ../_images/cdr_overview.png]

CDR-Hourly-Report

An hourly pictorial view of calls with call-count & call-duration.
You can compare different dates

URL:

	http://localhost:8000/hourly_report/

[image: ../_images/daily_compare_report1.png]

CDR-Country-Report

A pictorial view of all calls by country with the 10 most called countries in a pie chart.

URL:

	http://localhost:8000/country_report/

[image: ../_images/country_report.png]

Mail-Report

A list of the last 10 calls of the previous day, along with total calls, a
breakdown of the call status, and the top 5 countries called.

This report is emailed automatically, email recipients can be set up in the
admin section or by adding an email address in the “Email to send a report” field
in the Mail Report section.

URL:

	http://localhost:8000/mail_report/

[image: ../_images/mail_report.png]

Concurrent-call-report

A report of concurrent calls. The statistics are collated from the realtime
report, not from the CDR.

URL:

	http://localhost:8000/cdr_concurrent_calls/

[image: ../_images/concurrent_call.png]

Realtime-Report

Realtime monitoring of the traffic on the connected telecoms servers,
Freeswitch and Asterisk are supported.

URL:

	http://localhost:8000/cdr_realtime/

[image: ../_images/realtime.png]

World Map Report

A distriibution map of all calls / durations by country. You can select date criteria
and on mouse over on the world map you can get information about each country.

URL:

	http://localhost:8000/world_map/

[image: ../_images/world_map_I.png]
[image: ../_images/world_map_II.png]

Alert Settings

URL:

	http://localhost:8000/alert/

[image: ../_images/alert_setting.png]

Alert Report

URL:

	http://localhost:8000/alert_report/

[image: ../_images/alert_report.png]

Destination Control

URL:

	http://localhost:8000/trust_control/

[image: ../_images/destination_control.png]

Diagnostic CDR-Stats

URL:

	http://localhost:8000/diagnostic/

[image: ../_images/diagnostic.png]

Rates

voip call rates.

URL:

	http://localhost:8000/rates/

[image: ../_images/rates.png]

Call Simulator

voip call simulator.

URL:

	http://localhost:8000/simulator/

[image: ../_images/call_simulator.png]

Daily report of Billed call

Daily report of Billed call.

URL:

	http://localhost:8000/billing_report/

[image: ../_images/cdr_billing_report.png]

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

PostgreSQL

	Web:	http://www.postgresql.org/

–

PostgreSQL is an object-relational database management system (ORDBMS) with an
emphasis on extensibility and standards-compliance.

PostgreSQL provides few interesting features that make it a perfect choice for
CDR-Stats:

	Materialized view (http://www.postgresql.org/docs/9.4/static/rules-materializedviews.html),
these views contains the results of queries, it’s ideal for aggregation
views, they also can be refreshed since PG 9.4 without locking.

	Json Types (http://www.postgresql.org/docs/9.4/static/datatype-json.html),
are for storing JSON (JavaScript Object Notation) data, this field is ideal to
store non-structured data. CDR-Stats aggregate data from several types of telco
switches where the type of data received can vary.

	Materialized views

Materialized views

We created 2 Materialized views to help on our reporting, here is the schema
structure of those 2 views:

-- Materialized View
CREATE MATERIALIZED VIEW matv_voip_cdr_aggr_hour AS
 SELECT
 date_trunc('hour', starting_date) as starting_date,
 country_id,
 switch_id,
 cdr_source_type,
 hangup_cause_id,
 user_id,
 count(*) AS nbcalls,
 sum(duration) AS duration,
 sum(billsec) AS billsec,
 sum(buy_cost) AS buy_cost,
 sum(sell_cost) AS sell_cost
 FROM
 voip_cdr
 GROUP BY
 date_trunc('hour', starting_date), country_id, switch_id, cdr_source_type, hangup_cause_id, user_id;

-- Create index on Materialized view
CREATE UNIQUE INDEX matv_voip_cdr_aggr_hour_date
 ON matv_voip_cdr_aggr_hour (starting_date, country_id, switch_id, cdr_source_type, hangup_cause_id);

-- Materialized View
CREATE MATERIALIZED VIEW matv_voip_cdr_aggr_min AS
 SELECT
 date_trunc('minute', starting_date) as starting_date,
 country_id,
 switch_id,
 cdr_source_type,
 hangup_cause_id,
 user_id,
 count(*) AS nbcalls,
 sum(duration) AS duration,
 sum(billsec) AS billsec,
 sum(buy_cost) AS buy_cost,
 sum(sell_cost) AS sell_cost
 FROM
 voip_cdr
 GROUP BY
 date_trunc('minute', starting_date), country_id, switch_id, cdr_source_type, hangup_cause_id, user_id;

-- Create index on Materialized view
CREATE UNIQUE INDEX matv_voip_cdr_aggr_min_date
 ON matv_voip_cdr_aggr_min (starting_date, country_id, switch_id, cdr_source_type, hangup_cause_id);

You can drop those views with:

-- Drop Materialized View
DROP MATERIALIZED VIEW matv_voip_cdr_aggr_hour;

-- Drop Materialized View
DROP MATERIALIZED VIEW matv_voip_cdr_aggr_min;

You can refresh the view as follows, using “CONCURRENTLY” to ensure we do not lock the view:

Refresh without lock
REFRESH MATERIALIZED VIEW CONCURRENTLY matv_voip_cdr_aggr_hour;

Refresh without lock
REFRESH MATERIALIZED VIEW CONCURRENTLY matv_voip_cdr_aggr_min;

The update of the Materialized view is done periodically by a celery task using the above commands “REFRESH MATERIALIZED VIEW”.

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

Developer doc

Contents:

	Prerequisites

	Coding Style & Structure
	Style

	Structure

	Database Design

	Objects Description
	Switch

	HangupCause

	UserProfile

	Alarm

	AlertRemovePrefix

	AlarmReport

	Blacklist

	Whitelist

	VoIPPlan

	BanPlan

	VoIPPlan_BanPlan

	BanPrefix

	VoIPRetailPlan

	VoIPPlan_VoIPRetailPlan

	VoIPRetailRate

	VoIPCarrierPlan

	VoIPCarrierRate

	VoIPPlan_VoIPCarrierPlan

	Objects used by the VoIP Billing module
	Prefix

	Provider

	VoIPPlan

	VoIPRetailPlan

	VoIPPlan_VoIPRetailPlan

	VoIPRetailRate

	VoIPCarrierPlan

	VoIPCarrierRate

	VoIPPlan_VoIPCarrierPlan

	VoIP Call Report

	CDR-Stats Views
	cdr_view

	cdr_detail

	cdr_dashboard

	cdr_overview

	cdr_realtime

	cdr_daily_comparison

	cdr_concurrent_calls

	world_map_view

	mail_report

	customer_detail_change

	alarm_list

	alarm_add

	alarm_del

	alarm_change

	alarm_test

	alert_report

	trust_control

	index

	diagnostic

	login_view

	logout_view

	pleaselog

	voip_rates

	export_rate

	simulator

	billing_report

	cust_password_reset

	cust_password_reset_done

	cust_password_reset_confirm

	cust_password_reset_complete

	CDR-Stats Tasks
	sync_cdr_pending

	chk_alarm

	blacklist_whitelist_notification

	send_cdr_report

	RebillingTask

	ReaggregateTask

	Test Case Descriptions
	Requirement

	How to Run Tests

	Javascript Files

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Developer doc

Prerequisites

	To fully understand this project, developers will need to have a advanced knowledge of:

	
	Django : http://www.djangoproject.com/

	Celery : http://www.celeryproject.org/

	Python : http://www.python.org/

	Freeswitch : http://www.freeswitch.org/

	Asterisk : http://www.asterisk.org/

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Developer doc

Coding Style & Structure

Style

Coding follows the PEP 8 Style Guide for Python Code [http://www.python.org/dev/peps/pep-0008/].

Structure

The CDR-Stats directory:

|-- api - The code for APIs
| `-- api_playground
|-- cdr - The code for CDR
| |-- management
| |-- templatetags
| `-- fixtures
|-- cdr_alert - The code for alarm, blacklist, whitelist
| |-- management
| `-- fixtures
|-- frontend - The code for login, logout user
|-- user_profile - The code for user detail of system
|-- static
| |-- cdr
| | |-- css
| | |-- js
| | |-- icons
| | `-- images
|-- resources - This area is used to hold media files
`-- templates - This area is used to override templates
 |-- admin
 |-- admin_tools
 |-- api_browser
 `-- frontend

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Developer doc

Database Design

The current database schema is shown below:

[image: ../_images/model_cdr-stats.png]
Follow this link for more details : https://github.com/cdr-stats/cdr-stats/raw/master/docs/source/_static/images/model_cdr-stats.png

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Developer doc

Objects Description

Switch

	
class cdr.models.Switch(*args, **kwargs)

	This defines the Switch

Attributes:

	name - Name of switch.

	ipaddress - ipaddress

Name of DB table: voip_switch

HangupCause

	
class cdr.models.HangupCause(*args, **kwargs)

	This defines the HangupCause

Attributes:

	code - ITU-T Q.850 Code.

	enumeration - Enumeration

	cause - cause

	description - cause description

Name of DB table: hangup_cause

UserProfile

	
class user_profile.models.UserProfile(*args, **kwargs)

	This defines extra features for the user

Attributes:

	accountcode - Account name.

	address -

	city -

	state -

	address -

	country -

	zip_code -

	phone_no -

	fax -

	company_name -

	company_website -

	language -

	note -

Relationships:

	user - Foreign key relationship to the User model.

	userprofile_gateway - ManyToMany

	userprofile_voipservergroup - ManyToMany

	dialersetting - Foreign key relationship to the DialerSetting model.

Name of DB table: user_profile

Alarm

AlertRemovePrefix

AlarmReport

Blacklist

Whitelist

VoIPPlan

	
class voip_billing.models.VoIPPlan(*args, **kwargs)

	VoIPPlans are associated to your clients, this defines the rate at which
the VoIP calls are sold to your clients.
A VoIPPlan is a collection of VoIPRetailPlans, you can have 1 or more
VoIPRetailPlans associated to the VoIPPlan

A client has a single VoIPPlan,
VoIPPlan has many VoIPRetailPlans.
VoIPRetailPlan has VoIPRetailRates

The LCR system will route the VoIP via the lowest cost carrier.

BanPlan

	
class voip_billing.models.BanPlan(*args, **kwargs)

	List of Ban Plan which are linked to VoIP Plan

VoIPPlan_BanPlan

	
class voip_billing.models.VoIPPlan_BanPlan(*args, **kwargs)

	OnetoMany relationship between VoIPPlan & BanPlan

BanPrefix

	
class voip_billing.models.BanPrefix(*args, **kwargs)

	Ban prefixes are linked to Ban plan & VoIP with these prefix
will not be authorized to send.

	
prefix_with_name()

	Return prefix with name
on Ban Prefix Listing (changelist_view)

VoIPRetailPlan

	
class voip_billing.models.VoIPRetailPlan(*args, **kwargs)

	This contains the VoIPRetailRates to retail to the customer. these plans are
associated to the VoIPPlan with a ManyToMany relation.
It defines the costs at which we sell the VoIP calls to clients.

VoIPRetailPlan will then contain a set of VoIPRetailRates which will define
the cost of sending a VoIP call to each destination.
The system can have several VoIPRetailPlans, but only the ones associated to
the VoIPplan will be used by the client.

VoIPPlan_VoIPRetailPlan

	
class voip_billing.models.VoIPPlan_VoIPRetailPlan(*args, **kwargs)

	ManytoMany relationship between VoIPPlan & VoIPRetailPlan

VoIPRetailRate

	
class voip_billing.models.VoIPRetailRate(*args, **kwargs)

	A single VoIPRetailRate consists of a retail rate and prefix at which you
want to use to sell a VoIP Call to a particular destination.
VoIPRetailRates are grouped by VoIPRetailPlan, which will be then in turn be
associated to a VoIPPlan

	
prefix_with_name()

	Return prefix with name
on Retail Rate listing (changelist_view)

	
voip_retail_plan_name()

	Return Retail Plan name
on Retail Rate listing (changelist_view)

VoIPCarrierPlan

	
class voip_billing.models.VoIPCarrierPlan(*args, **kwargs)

	Once the retail price is defined by the VoIPPlan, VoIPRetailPlans and
VoIPRetailRates, we also need to know which is the best route to send
the VoIP how much it will cost, and which VoIP Gateway to use.

VoIPCarrierPlan is linked to the VoIP Plan, so once we found how to sell
the service to the client, we need to look at which carrier (Provider)
we want to use, The VoIPCarrierPlan defines this.

The system can have several VoIPCarrierPlans, but only the one associated to
the VoIPRetailPlan-VoIPPlan will be used to connect the VoIP of
the client.

VoIPCarrierRate

	
class voip_billing.models.VoIPCarrierRate(*args, **kwargs)

	The VoIPCarrierRates are a set of all the carrier rate and prefix that
will be used to purchase the VoIP from your carrier,
VoIPCarrierRates are grouped by VoIPCarrierPlan, which will be then
associated to a VoIPRetailPlan

	
prefix_with_name()

	Return prefix with name
on Carrier Rate listing (changelist_view)

	
voip_carrier_plan_name()

	Return Carrier Plan name
on Carrier Rate listing (changelist_view)

VoIPPlan_VoIPCarrierPlan

	
class voip_billing.models.VoIPPlan_VoIPCarrierPlan(*args, **kwargs)

	ManytoMany relationship between VoIPPlan & VoIPCarrierPlan

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Developer doc

Objects used by the VoIP Billing module

Prefix

These are the prefixes and destinations.
For instance, 44 ; United Kingdom

Provider

This defines the VoIP Provider you want to use to deliver your VoIP calls.
Each provider will be associated to a Gateway which will link to the Service
Provider.

VoIPPlan

VoIPPlans are associated to your clients, this defines the rate at which the
VoIP calls are sold to your clients. A VoIPPlan is a collection of
VoIPRetailPlans, you can have 1 or more VoIPRetailPlans associated to the
VoIPPlan.

	A client has a single VoIPPlan

	A VoIPPlan has many VoIPRetailPlans

	A VoIPRetailPlan has VoIPRetailRates

LCR rules will bill the call based on the lowest cost carrier.

VoIPRetailPlan

This contains the VoIPRetailRates, the list of rates to retail to the customer.
These plans are associated to the VoIPPlan with a ManyToMany relation.

It defines the costs at which we sell the VoIP calls to the clients.
VoIPRetailPlan will then contain a set of VoIPRetailRates which will define the
cost of sending a VoIP to each destination.

The system can have several VoIPRetailPlans, but only the ones associated to the
VoIPplan will be used by the client.

VoIPPlan_VoIPRetailPlan

Help to setup the ManytoMany relationship between VoIPPlan & VoIPRetailPlan.

VoIPRetailRate

A single VoIPRetailRate consists of a retail rate and prefix at which you want
to use to sell a VoIP to a particular destination.
VoIPRetailRates are grouped by VoIPRetailPlan, which will be then in turn be
associated to a VoIPPlan.

VoIPCarrierPlan

Once the retail price is defined by the VoIPRetailPlan, we also need to know
which is the best route to send the call, what will be our cost, and which
Gateway/Provider will be used.

VoIPCarrierPlan is linked to the VoIPRetailPlan, so once we have determined the destination, we need to look at which carrier (Provider) we want to use.
The VoIPCarrierPlan defines exactly this.

The system can have several VoIPCarrierPlans, but only the one associated to the
VoIPRetailPlan-VoIPPlan will be used to connect the VoIP of the client.

VoIPCarrierRate

The VoIPCarrierRates are a set of all the carrier rate and prefix that will be
used to purchase the VoIP from your carrier, VoIPCarrierRates are grouped by
VoIPCarrierPlan, which will be then associated to a VoIPRetailPlan.

VoIPPlan_VoIPCarrierPlan

Help to setup the ManytoMany relationship between VoIPPlan & VoIPCarrierPlan.

VoIP Call Report

This gives information of all the call delivered with the carrier charges and
revenue of each message.

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Developer doc

CDR-Stats Views

cdr_view

cdr_detail

cdr_dashboard

cdr_overview

cdr_realtime

cdr_daily_comparison

cdr_concurrent_calls

world_map_view

mail_report

customer_detail_change

alarm_list

alarm_add

alarm_del

alarm_change

alarm_test

alert_report

trust_control

index

diagnostic

login_view

logout_view

pleaselog

voip_rates

export_rate

simulator

billing_report

cust_password_reset

	
mod_registration.views.cust_password_reset(request)

	Use django.contrib.auth.views.password_reset view method for
forgotten password on the Customer UI

This method sends an e-mail to the user’s email-id which is entered in
password_reset_form

cust_password_reset_done

	
mod_registration.views.cust_password_reset_done(request)

	Use django.contrib.auth.views.password_reset_done view method for
forgotten password on the Customer UI

This will show a message to the user who is seeking to reset their
password.

cust_password_reset_confirm

	
mod_registration.views.cust_password_reset_confirm(request, uidb64=None, token=None)

	Use django.contrib.auth.views.password_reset_confirm view method for
forgotten password on the Customer UI

This will allow a user to reset their password.

cust_password_reset_complete

	
mod_registration.views.cust_password_reset_complete(request)

	Use django.contrib.auth.views.password_reset_complete view method
for forgotten password on theCustomer UI

This shows an acknowledgement to the user after successfully resetting
their password for the system.

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Developer doc

CDR-Stats Tasks

sync_cdr_pending

chk_alarm

blacklist_whitelist_notification

send_cdr_report

RebillingTask

	
class voip_billing.tasks.RebillingTask

	Re-billing for VoIPCall

Usage:

RebillingTask.delay(calls_kwargs, voipplan_id)

ReaggregateTask

	
class voip_billing.tasks.RebillingTask

	Re-billing for VoIPCall

Usage:

RebillingTask.delay(calls_kwargs, voipplan_id)

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Developer doc

Test Case Descriptions

Requirement

Run/Start Celery:

$ /etc/init.d/celery start

or:

$ python manage.py celeryd -l info

Run/Start Redis:

$ /etc/init.d/redis-server start

How to Run Tests

1. Run Full Test Suit:

$ python manage.py test --verbosity=2

3. Run CDRStatsAdminInterfaceTestCase:

$ python manage.py test cdr.CDRStatsAdminInterfaceTestCase --verbosity=2

4. Run CDRStatsCustomerInterfaceTestCase:

$ python manage.py test cdr.CDRStatsCustomerInterfaceTestCase --verbosity=2

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	Developer doc

Javascript Files

	jQuery [http://www.jquery.com/] is a fast and concise JavaScript Library that simplifies HTML document traversing, event handling, animating, and Ajax interactions for rapid web development. jQuery is designed to change the way that you write JavaScript.

	NVD3 [http://nvd3.org/] is an attempt to build re-usable charts and chart components for d3.js without taking away the power that d3.js gives you. This is a very young collection of components, with the goal of keeping these components very customizeable, staying away from your standard cookie cutter solutions.

	Bootstrap [http://www.twitter.github.com/bootstrap/] is sleek, intuitive, and powerful front-end framework for faster and easier web development.

	Bootbox [http://www.bootboxjs.com/] is a small JavaScript library which allows you to create programmatic dialog boxes using Twitter’s Bootstrap modals, without having to worry about creating, managing or removing any of the required DOM elements or JS event handlers.

	Bootstrap-datepicker [http://www.eyecon.ro/bootstrap-datepicker/] Datepicker for Bootstrap

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

API Reference

Contents:

	SwitchSerializer

	VoIPRateList

	VoipCallResource

Testing console of APIs:

URL : http://127.0.0.1:8000/api-explorer/

[image: _images/list_of_api.png]
To test individual api, click on one api from the api list and you will get a similar screen as follows:

URL : http://127.0.0.1:8000/api-explorer/switch/

[image: _images/switch_playground.png]

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	API Reference

SwitchSerializer

	
class apirest.switch_serializers.SwitchSerializer(instance=None, data=None, files=None, context=None, partial=False, many=False, allow_add_remove=False, **kwargs)

	Read:

CURL Usage:

curl -u username:password -H 'Accept: application/json' http://localhost:8000/rest-api/switch/

curl -u username:password -H 'Accept: application/json' http://localhost:8000/rest-api/switch/%switch-id%/

Response:

{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [
 {
 "url": "http://127.0.0.1:8000/rest-api/switch/1/",
 "name": "localhost",
 "ipaddress": "127.0.0.1",
 "key_uuid": "25116b72-b477-11e1-964f-000c296bd875"
 }
]
}

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	API Reference

VoIPRateList

	
class apirest.view_voip_rate.VoIPRateList(**kwargs)

	List all voip rate

Read:

CURL Usage:

curl -u username:password -H 'Accept: application/json'
http://localhost:8000/rest-api/voip-rate/?recipient_phone_no=4323432&sort_field=prefix&order=desc

curl -u username:password -H 'Accept: application/json'
http://localhost:8000/rest-api/voip-rate/?dialcode=4323432&sort_field=prefix&order=desc

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

 	API Reference

VoipCallResource

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

Contributing

This document is highly inspired from the Celery [http://docs.celeryproject.org/en/latest/contributing.html] documentation.

Welcome to CDR-Stats!

This document is fairly extensive and you are not really expected
to study this in detail for small contributions;

The most important rule is that contributing must be easy
and that the community is friendly and not nitpicking on details
such as coding style.

If you’re reporting a bug you should read the Reporting bugs section
below to ensure that your bug report contains enough information
to successfully diagnose the issue, and if you’re contributing code
you should try to mimic the conventions you see surrounding the code
you are working on, but in the end all patches will be cleaned up by
the person merging the changes so don’t worry too much.

	Community Code of Conduct
	Be considerate.

	Be respectful.

	Be collaborative.

	When you disagree, consult others.

	When you are unsure, ask for help.

	Step down considerately.

	Reporting Bugs
	Bugs

	Issue Trackers

	Versions

	Branches
	Feature branches

	Tags

	Working on Features & Patches
	Forking and setting up the repository

	Running the unit test suite

	Creating pull requests
	Calculating test coverage

	Running the tests on all supported Python versions

	Building the documentation

	Verifying your contribution
	pyflakes & PEP8

	Coding Style

	Contacts
	Committers
	Areski Belaid

	Website
	Star2Billing

	Release Procedure
	Updating the version number

	Releasing

Community Code of Conduct

The goal is to maintain a diverse community that is pleasant for everyone.
That is why we would greatly appreciate it if everyone contributing to and
interacting with the community also followed this Code of Conduct.

The Code of Conduct covers our behavior as members of the community,
in any forum, mailing list, wiki, website, Internet relay chat (IRC), public
meeting or private correspondence.

The Code of Conduct is heavily based on the Ubuntu Code of Conduct [http://www.ubuntu.com/community/conduct],
Celery Code of Conduct [http://docs.celeryproject.org/en/v2.2.5/contributing.html], and the Pylons Code of Conduct [http://docs.pylonshq.com/community/conduct.html].

Be considerate.

Your work will be used by other people, and you in turn will depend on the
work of others. Any decision you take will affect users and colleagues, and
we expect you to take those consequences into account when making decisions.
Even if it’s not obvious at the time, our contributions to CDR-Stats will impact
the work of others. For example, changes to code, infrastructure, policy,
documentation and translations during a release may negatively impact
others work.

Be respectful.

The CDR-Stats community and its members treat one another with respect. Everyone
can make a valuable contribution to CDR-Stats. We may not always agree, but
disagreement is no excuse for poor behavior and poor manners. We might all
experience some frustration now and then, but we cannot allow that frustration
to turn into a personal attack. It’s important to remember that a community
where people feel uncomfortable or threatened is not a productive one. We
expect members of the CDR-Stats community to be respectful when dealing with
other contributors as well as with people outside the CDR-Stats project and with
users of CDR-Stats.

Be collaborative.

Collaboration is central to CDR-Stats and to the larger free software community.
We should always be open to collaboration. Your work should be done
transparently and patches from CDR-Stats should be given back to the community
when they are made, not just when the distribution releases. If you wish
to work on new code for existing upstream projects, at least keep those
projects informed of your ideas and progress. It many not be possible to
get consensus from upstream, or even from your colleagues about the correct
implementation for an idea, so don’t feel obliged to have that agreement
before you begin, but at least keep the outside world informed of your work,
and publish your work in a way that allows outsiders to test, discuss and
contribute to your efforts.

When you disagree, consult others.

Disagreements, both political and technical, happen all the time and
the CDR-Stats community is no exception. It is important that we resolve
disagreements and differing views constructively and with the help of the
community and community process. If you really want to go a different
way, then we encourage you to make a derivative distribution or alternate
set of packages that still build on the work we’ve done to utilize as common
of a core as possible.

When you are unsure, ask for help.

Nobody knows everything, and nobody is expected to be perfect. Asking
questions avoids many problems down the road, and so questions are
encouraged. Those who are asked questions should be responsive and helpful.
However, when asking a question, care must be taken to do so in an appropriate
forum.

Step down considerately.

Developers on every project come and go and CDR-Stats is no different. When you
leave or disengage from the project, in whole or in part, we ask that you do
so in a way that minimizes disruption to the project. This means you should
tell people you are leaving and take the proper steps to ensure that others
can pick up where you leave off.

Reporting Bugs

Bugs

Bugs can always be described to the Mailing list, but the best
way to report an issue and to ensure a timely response is to use the
issue tracker.

	Create a GitHub account.

You need to create a GitHub account [https://github.com/signup/free] to be able to create new issues
and participate in the discussion.

	Determine if your bug is really a bug.

You should not file a bug if you are requesting support. For that you can use
the Mailing list, or IRC.

	Make sure your bug hasn’t already been reported.

Search through the appropriate Issue tracker. If a bug like yours was found,
check if you have new information that could be reported to help
the developers fix the bug.

	Check if you’re using the latest version.

A bug could be fixed by some other improvements and fixes - it might not have an
existing report in the bug tracker. Make sure you’re using the latest version.

	Collect information about the bug.

To have the best chance of having a bug fixed, we need to be able to easily
reproduce the conditions that caused it. Most of the time this information
will be from a Python traceback message, though some bugs might be in design,
spelling or other errors on the website/docs/code.

	If the error is from a Python traceback, include it in the bug report.

	We also need to know what platform you’re running (Windows, OS X, Linux,
etc.), the version of your Python interpreter, and the version of
related packages that you were running when the bug occurred.

	Submit the bug.

By default GitHub [http://github.com] will email you to let you know when new comments have
been made on your bug. In the event you’ve turned this feature off, you
should check back on occasion to ensure you don’t miss any questions a
developer trying to fix the bug might ask.

Issue Trackers

Bugs for a package in the CDR-Stats ecosystem should be reported to the relevant
issue tracker.

	CDR-Stats Core: https://github.com/cdr-stats/cdr-stats/issues/

	Python-Acapela: https://github.com/cdr-stats/python-acapela/issues

	Lua-Acapela: https://github.com/cdr-stats/lua-acapela/issues

	Python-NVD3: https://github.com/areski/python-nvd3/issues

If you are unsure of the origin of the bug you can ask the
Mailing list, or just use the CDR-Stats issue tracker.

Versions

Version numbers consists of a major version, minor version and a release number.
We use the versioning semantics described by semver: http://semver.org.

Stable releases are published at PyPI
while development releases are only available in the GitHub git repository as tags.
All version tags starts with “v”, so version 0.8.0 is the tag v0.8.0.

Branches

Current active version branches:

	master (http://github.com/cdr-stats/cdr-stats/tree/master)

	2.19.10 (http://github.com/cdr-stats/cdr-stats/tree/v2.19.10)

You can see the state of any branch by looking at the Changelog:

https://github.com/cdr-stats/cdr-stats/blob/master/Changelog

Feature branches

Major new features are worked on in dedicated branches.
There is no strict naming requirement for these branches.

Feature branches are removed once they have been merged into a release branch.

Tags

Tags are used exclusively for tagging releases. A release tag is
named with the format vX.Y.Z, e.g. v2.3.1.
Experimental releases contain an additional identifier vX.Y.Z-id, e.g.
v3.0.0-rc1. Experimental tags may be removed after the official release.

Working on Features & Patches

Note

Contributing to CDR-Stats should be as simple as possible,
so none of these steps should be considered mandatory.

You can even send in patches by email if that is your preferred
work method. We won’t like you any less, any contribution you make
is always appreciated!

However following these steps may make maintainers life easier,
and may mean that your changes will be accepted sooner.

Forking and setting up the repository

First you need to fork the repository, a good introduction to this
is in the Github Guide: Fork a Repo [http://help.github.com/fork-a-repo/].

After you have cloned the repository you should checkout your copy
to a directory on your machine:

$ git clone git@github.com:username/cdr-stats.git

When the repository is cloned enter the directory to set up easy access
to upstream changes:

$ cd cdr-stats
$ git remote add upstream git://github.com/cdr-stats/cdr-stats.git
$ git fetch upstream

If you need to pull in new changes from upstream you should
always use the --rebase option to git pull:

$ git pull --rebase upstream master

With this option you don’t clutter the history with merging
commit notes. See Rebasing merge commits in git [http://notes.envato.com/developers/rebasing-merge-commits-in-git/].
If you want to learn more about rebasing see the Rebase [http://help.github.com/rebase/]
section in the Github guides.

If you need to work on a different branch than master you can
fetch and checkout a remote branch like this:

$ git checkout --track -b 3.0-devel origin/3.0-devel

Running the unit test suite

To run the CDR-Stats test suite you need to install a few dependencies.
A complete list of the dependencies needed are located in
requirements/test.txt.

Installing the test requirements:

$ pip install -U -r requirements/test.txt

When installation of dependencies is complete you can execute
the test suite by calling py.test:

$ py.test

Some useful options to py.test are:

	-x

Exit instantly on first error or failed test.

	--ipdb

Starts the interactive IPython debugger on errors.

	-k EXPRESSION

Only run tests which match the given substring expression.

	-v

Increase verbose.

If you want to run the tests for a single test file only
you can do so like this:

$ py.test appointment./tests.py

Creating pull requests

When your feature/bugfix is complete you may want to submit
a pull requests so that it can be reviewed by the maintainers.

Creating pull requests is easy, and also let you track the progress
of your contribution. Read the Pull Requests [http://help.github.com/send-pull-requests/] section in the Github
Guide to learn how this is done.

You can also attach pull requests to existing issues by following
the steps outlined here: http://bit.ly/koJoso

Calculating test coverage

To calculate test coverage you must first install the coverage module.

Installing the coverage module:

$ pip install -U coverage

Code coverage in HTML:

$ nosetests --with-coverage --cover-html

The coverage output will then be located at
cdr-stats/tests/cover/index.html.

Code coverage in XML (Cobertura-style):

$ nosetests --with-coverage --cover-xml --cover-xml-file=coverage.xml

The coverage XML output will then be located at coverage.xml

Running the tests on all supported Python versions

There is a tox configuration file in the top directory of the
distribution.

To run the tests for all supported Python versions simply execute:

$ tox

If you only want to test specific Python versions use the -e
option:

$ tox -e py27

Building the documentation

To build the documentation you need to install the dependencies
listed in requirements/docs.txt:

$ pip install -U -r requirements/docs.txt

After these dependencies are installed you should be able to
build the docs by running:

$ cd docs
$ rm -rf .build
$ make html

Make sure there are no errors or warnings in the build output.
After building succeeds the documentation is available at .build/html.

Verifying your contribution

To use these tools you need to install a few dependencies. These dependencies
can be found in requirements/pkgutils.txt.

Installing the dependencies:

$ pip install -U -r requirements/pkgutils.txt

pyflakes & PEP8

To ensure that your changes conform to PEP8 and to run pyflakes
execute:

$ flake8 cdr_stats

Coding Style

You should probably be able to pick up the coding style
from surrounding code, but it is a good idea to be aware of the
following conventions.

	All Python code must follow the PEP-8 [http://www.python.org/dev/peps/pep-0008/] guidelines.

pep8.py [http://pypi.python.org/pypi/pep8] is an utility you can use to verify that your code
is following the conventions.

	Docstrings must follow the PEP-257 [http://www.python.org/dev/peps/pep-0257/] conventions, and use the following
style.

Do this:

def method(self, arg):
 """Short description.

 More details.

 """

or:

def method(self, arg):
 """Short description."""

but not this:

def method(self, arg):
 """
 Short description.
 """

	Lines should not exceed 78 columns.

You can enforce this in vim by setting the textwidth option:

set textwidth=78

If adhering to this limit makes the code less readable, you have one more
character to go on, which means 78 is a soft limit, and 79 is the hard
limit :)

	Import order

	Python standard library (import xxx)

	Python standard library (‘from xxx import`)

	Third party packages.

	Other modules from the current package.

or in case of code using Django:

	Python standard library (import xxx)

	Python standard library (‘from xxx import`)

	Third party packages.

	Django packages.

	Other modules from the current package.

Within these sections the imports should be sorted by module name.

Example:

import threading
import time

from collections import deque
from Queue import Queue, Empty

from .datastructures import TokenBucket
from .five import zip_longest, items, range
from .utils import timeutils

	Wildcard imports must not be used (from xxx import *).

	For distributions where Python 2.5 is the oldest support version
additional rules apply:

	Absolute imports must be enabled at the top of every module:

from __future__ import absolute_import

	If the module uses the with statement and must be compatible
with Python 2.5 then it must also enable that:

from __future__ import with_statement

	Every future import must be on its own line, as older Python 2.5
releases did not support importing multiple features on the
same future import line:

Good
from __future__ import absolute_import
from __future__ import with_statement

Bad
from __future__ import absolute_import, with_statement

(Note that this rule does not apply if the package does not include
support for Python 2.5)

	Note that we use “new-style` relative imports when the distribution
does not support Python versions below 2.5

This requires Python 2.5 or later:

from . import submodule

Contacts

This is a list of people that can be contacted for questions
regarding the official git repositories, PyPI packages
Read the Docs pages.

If the issue is not an emergency then it is better
to report an issue.

Committers

Areski Belaid

	github:	https://github.com/areski

	twitter:	http://twitter.com/#!/areskib

Website

The CDR-Stats Project is run and maintained by

Star2Billing

	website:	http://star2billing.com/

	twitter:	https://twitter.com/#!/star2billing

Release Procedure

Updating the version number

The version number must be updated one place:

	cdr_stats/cdr_stats/__init__.py

After you have changed these files you must render
the README files. There is a script to convert sphinx syntax
to generic reStructured Text syntax, and the make target readme
does this for you:

$ make readme

Now commit the changes:

$ git commit -a -m "Bumps version to X.Y.Z"

and make a new version tag:

$ git tag vX.Y.Z
$ git push --tags

Releasing

Commands to make a new public stable release:

$ make distcheck # checks pep8, autodoc index, runs tests and more
$ make dist # NOTE: Runs git clean -xdf and removes files not in the repo.
$ python setup.py sdist bdist_wheel upload # Upload package to PyPI

If this is a new release series then you also need to do the
following:

	
	Go to the Read The Docs management interface at:

	http://readthedocs.org/projects/cdr-stats/?fromdocs=cdr-stats

	Enter “Edit project”

Change default branch to the branch of this series, e.g. 2.4
for series 2.4.

	Also add the previous version under the “versions” tab.

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

Resources

	Getting Help
	Mailing list

	IRC

	Bug tracker

	Documentation

	Support

	License

Getting Help

Mailing list

For discussions about the usage, development, and future of CDR-Stats,
please join the CDR-Stats [http://groups.google.com/group/cdr-stats] mailing list.

IRC

Come chat with us on IRC. The #cdr-stats channel is located at the Freenode [http://freenode.net]
network.

Bug tracker

If you have any suggestions, bug reports or annoyances please report them
to our issue tracker at https://github.com/cdr-stats/cdr-stats/issues/

Documentation

The latest documentation [http://www.cdr-stats.org/documentation/] with user guides, tutorials and API references is hosted on CDR-Stats website : http://www.cdr-stats.org/documentation/

Beginner’s Guide : http://www.cdr-stats.org/documentation/beginners-guide/

Support

Star2Billing S.L. offers consultancy including installation, training and customisation

Website : http://www.star2billing.com

Email : cdr-stats@star2billing.com

License

This software is licensed under the MPL 2.0 License. See the LICENSE
file in the top distribution directory for the full license text.

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	CDR-Stats 3.1.1 documentation

Frequently Asked Questions

	General

	CDR Import

	Debugging

General

What is CDR-Stats?

Answer: CDR-Stats is a free and open source web based Call Detail Record analysis application with the ability to display reports and graphs.

Why should I use CDR-Stats?

Answer: We foresee two main areas where CDR-Stats would be useful. For telecoms companies who wish to mediate and rate call data records, ultimately to create invoices for their customers, as well as do carrier reconciliation, and for organisations that wish to analyse call patterns. For instance: if you have call detail records from an office PBX, telecoms switch(s), or carrier CDR to analyse then CDR-Stats is a useful tool to analyse the data and look for patterns in the traffic that may indicate problems or potential fraud. Furthermore, CDR-Stats can be configured to send email alerts on detection of unusual activity, as well as send daily reports on traffic.

CDR Import

How to start over and relaunch the import?

Answer: First stop celery by stopping supervisor:

$ /etc/init.d/supervisor stop

Then remove the aggregate data, connect on postgresql and enter the following:

DROP MATERIALIZED VIEW matv_voip_cdr_aggr_hour;
DROP MATERIALIZED VIEW matv_voip_cdr_aggr_min;

Recreate the Materialized View as follow:

CREATE MATERIALIZED VIEW matv_voip_cdr_aggr_hour AS
 SELECT
 date_trunc('hour', starting_date) as starting_date,
 country_id,
 switch_id,
 cdr_source_type,
 hangup_cause_id,
 user_id,
 count(*) AS nbcalls,
 sum(duration) AS duration,
 sum(billsec) AS billsec,
 sum(buy_cost) AS buy_cost,
 sum(sell_cost) AS sell_cost
 FROM
 voip_cdr
 GROUP BY
 date_trunc('hour', starting_date), country_id, switch_id, cdr_source_type, hangup_cause_id, user_id;

CREATE MATERIALIZED VIEW matv_voip_cdr_aggr_min AS
 SELECT
 date_trunc('minute', starting_date) as starting_date,
 country_id,
 switch_id,
 cdr_source_type,
 hangup_cause_id,
 user_id,
 count(*) AS nbcalls,
 sum(duration) AS duration,
 sum(billsec) AS billsec,
 sum(buy_cost) AS buy_cost,
 sum(sell_cost) AS sell_cost
 FROM
 voip_cdr
 GROUP BY
 date_trunc('minute', starting_date), country_id, switch_id, cdr_source_type, hangup_cause_id, user_id;

Then, update all your CDRs from ‘import_cdr’ PostgreSQL database to be reimported as we flag them after import:

UPDATE cdr_import SET imported=FALSE;

Restart Celery:

$ /etc/init.d/supervisor stop

Finally check in the logs file that the CDRs are being imported:

tail -f /var/log/cdr-stats/djcelery_error.log

Debugging

How to debug mail connectivity?

Answer: Use mail_debug to test the mail connectivity:

$ workon cdr-stats
$ cd /usr/share/cdrstats
$ python manage.py mail_debug

What should I do if I have problems?

Answer:

	Review the installation script, and check that services are running.

	Read the documentation contained in the CDR-Stats website: http://docs.cdr-stats.org/en/latest/

	Ask a question on the mailing list: http://www.cdr-stats.org/community/

	Get professional support from the CDR-Stats team (Star2Billing): http://www.cdr-stats.org/support/

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	CDR-Stats 3.1.1 documentation

 Python Module Index

 a |
 c |
 m |
 u |
 v

 			

 		
 a	

 	[image: -]
 	
 apirest	

 	
 	
 apirest.switch_serializers	

 	
 	
 apirest.view_voip_rate	

 			

 		
 c	

 	[image: -]
 	
 cdr	

 	
 	
 cdr.models	

 			

 		
 m	

 	[image: -]
 	
 mod_registration	

 	
 	
 mod_registration.views	

 			

 		
 u	

 	[image: -]
 	
 user_profile	

 	
 	
 user_profile.models	

 			

 		
 v	

 	[image: -]
 	
 voip_billing	

 	
 	
 voip_billing.models	

 	
 	
 voip_billing.tasks	

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 Navigation

 	
 index

 	
 modules |

 	CDR-Stats 3.1.1 documentation

Index

 A
 | B
 | C
 | H
 | M
 | P
 | R
 | S
 | U
 | V

A

 	

 	apirest.switch_serializers (module)

 	

 	apirest.view_voip_rate (module)

B

 	

 	BanPlan (class in voip_billing.models)

 	

 	BanPrefix (class in voip_billing.models)

C

 	

 	cdr.models (module)

 	cust_password_reset() (in module mod_registration.views)

 	cust_password_reset_complete() (in module mod_registration.views)

 	

 	cust_password_reset_confirm() (in module mod_registration.views)

 	cust_password_reset_done() (in module mod_registration.views)

H

 	

 	HangupCause (class in cdr.models)

M

 	

 	mod_registration.views (module)

P

 	

 	prefix_with_name() (voip_billing.models.BanPrefix method)

 	

 	(voip_billing.models.VoIPCarrierRate method)

 	(voip_billing.models.VoIPRetailRate method)

R

 	

 	RebillingTask (class in voip_billing.tasks), [1]

S

 	

 	Switch (class in cdr.models)

 	

 	SwitchSerializer (class in apirest.switch_serializers)

U

 	

 	user_profile.models (module)

 	

 	UserProfile (class in user_profile.models)

V

 	

 	voip_billing.models (module)

 	voip_billing.tasks (module)

 	voip_carrier_plan_name() (voip_billing.models.VoIPCarrierRate method)

 	voip_retail_plan_name() (voip_billing.models.VoIPRetailRate method)

 	VoIPCarrierPlan (class in voip_billing.models)

 	VoIPCarrierRate (class in voip_billing.models)

 	VoIPPlan (class in voip_billing.models)

 	

 	VoIPPlan_BanPlan (class in voip_billing.models)

 	VoIPPlan_VoIPCarrierPlan (class in voip_billing.models)

 	VoIPPlan_VoIPRetailPlan (class in voip_billing.models)

 	VoIPRateList (class in apirest.view_voip_rate)

 	VoIPRetailPlan (class in voip_billing.models)

 	VoIPRetailRate (class in voip_billing.models)

 Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

 _static/images/model_cdr-stats.png
django.contrib.admin

Entry

nient_type (logenty)

ussr (bgentry)

Customer

usar_permesions (user)

usar_permesions (user)

django.contrib.auth

Message

lsv (_message s=t)

groups (user) \groups (user)

rmisions (group)

foroups (user)

usar_permesions (user)

ntent_typs (permission)

—

user_profile

admin_tools.menu

Tear (usarprofis)

tastypie

Apikey

ApiAccass.

Toor (api_tey)

admin_tools.dashboard

dPreferences.

NoticeQueusBatch

notification

ot (dashboardpreterances)

nder (sont_ofes)

Tocipint (1eckved_moiEes)

oot (notiesetig)

st obssrvediom)

nofice_type (notie)

otie_type (noticessting)

NoticeType

‘Obsarvaditem

Totice_typs (observediem)

ntent_typs (obssrvediem)

cdr_alert

AlarmReport

jarm (aarmreport)

Alarm

country_dialcode

untry_i (prefi)

ountry

MigrationHistory

AsteriskCDR

cdr

jteh_i (asterishod)

django.contrib.sites

dicelery

PeriodicTask
to
Pey

Imunwnamw {nterval (periodictask)

CrontabSchedule

TaskSetMeta

ier (tasistate)

harState

Taskieta

django.contrib.sessions

_static/images/CDR-Stats-Goals.png
Telecoms Switches

& R
A o
FreeSWITCH VolP Switches Aserisk

Database

nalytlcs

_static/images/cdr-stats.png

_static/images/cdr-stats-daily-report.png
oae - 15, uay 2012
cate 26

May 14

May 15

May 16

May 17

May 18

May 19

May 20

May 21

May 22

May 23

search.html

 Navigation

 		
 index

 		
 modules |

 		CDR-Stats 3.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

_static/images/cdr-stats_600.png
CDR-stats

_static/images/support-freeswitch.png
FreeSWITCH

_static/images/support-asterisk.png
@ ASTERISK

_static/images/CDR-Stats-Architecture.png
Telecoms Switches

FreeSWITCH @ Asterisk
CDR-Pushed
COR Pusher Database
@ CHET T
being importe ana
PostgresaL 9.4 aggregated by CDR-Stats

<

CDR-Stats

PO cor Import oo Analysi o) Alert! Fraud

Store CDR Common

Pre Aggregate data for reporting :

* Check Blacklisted phone Calls / Disallowed Countries

* Monthly / Daily Report Aggregation
* Country Report Aggregation

CDR

PostgresaL 0.4

_static/plus.png

installation/configure-freepbx.html

 Navigation

 		
 index

 		
 modules |

 		CDR-Stats 3.1.1 documentation »

Configure FreePBX

FreePBX is supported by CDR-Stats. CDR-Stats comes with CDR Collector App
called CDR-Pusher [https://github.com/cdr-stats/cdr-pusher], which will be installed on your FreePBX servers to
transport your CDRs to the CDR-Stats server.

CDR-Pusher will be configured to read the cdr from SQlite database, which
contains all the Call Data Records. You will need to configure your FreePBX
installation to store CDRs to SQLite for this you can refer to our
Installing on Asterisk documentation Configure Asterisk with CDR-Stats and CDR-Pusher.

 © Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

user-guide-doc/overview.html

 Navigation

 		
 index

 		
 modules |

 		CDR-Stats 3.1.1 documentation »

Overview

CDR-Stats is a web based application built on a Django Web framework which uses PostgreSQL as the CDR data store.

Celery (http://celeryproject.org/) is an asynchronous task queue/job queue based on distributed message.
It is used to build the backend system to monitor CDR, detect unusual activity, and react by sending an alert email.

CDR Stats Management Features

		CDR Mediation

		CDR Rating

		Multi-tenant design that allows call detail records from multiple switches or PBX systems.

		Custom alarm triggers can be set to email the administrator for a range of conditions including unusual average call durations, failed calls, and unexpected destinations called.

		Graphical tools help detect unusual call patterns which may indicate suspicious or fraudulent activity.

		Import Call Detail Records in CSV format

		Configure Switches for import

		Create Customer and assign accountcode

		Configure alert to detect unsual increase/decrease of Traffic

CDR Stats Customer Portal Features

		Password management

		Call Details Record

		Monthly, Daily, Hourly Call reporting

		Impact Reporting

		Country Reporting

		Realtime Reporting of calls in progress

		View Fraudulent Calls

		Concurrent Call Statistic

		Configure Mail Reporting

		Top 10 destination Traffic

		Export to CSV

		Automated daily reporting.

		Call cost reports

 © Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

user-guide-doc/how_to_use_it.html

 Navigation

 		
 index

 		
 modules |

 		CDR-Stats 3.1.1 documentation »

How to use CDR-Stats

CDR-Stats has two main areas, the admin screen and the customer portal. The admin and customer areas
are described in detail in the following pages.

CDR-Stats has been designed to be responsive, that is to say the the layout changes depending on the
size and resolution of the browser viewing the pages.

 © Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

celery/celery-installation.html

 Navigation

 		
 index

 		
 modules |

 		CDR-Stats 3.1.1 documentation »

Celery Installation

Celery

Celery is an asynchronous task queue/job queue based on distributed message
passing. It is focused on real-time operation, but supports scheduling as well.

You can install Celery either via the Python Package Index (PyPI) or from source:

$ pip install celery

Downloading and installing from source

To Download the latest version click here [http://pypi.python.org/pypi/celery/].

You can install it by doing the following:

$ tar xvfz celery-X.X.X.tar.gz

$ cd celery-X.X.X

$ python setup.py build

$ python setup.py install # as root

Using the development version

You can clone the repository by doing the following:

$ git clone git://github.com/ask/celery.git

 © Copyright 2011-2015, Arezqui Belaid <info@star2billing.com>.

_images/world_map_I.png
World report

Country Calls Detail |~ Country List

From® To* Switch

2015-02-23 00:00 B 2015-04-07 23:55 L] Al switches j

‘World Map Report - 23rd Feb. 2015 to 7th April 2015

S

Call Report Data

Hover over a country

SR

)

Poccus

1

México.

0-10 Calls
10-30 Calls
30-40 Calls
indonesia 40-60 Calls
60-70 Calls
70-80 Calls
80-100 Calls
Australia 100+ Calls

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

_images/admin_cdr_view.png
From oLa o 2130028 Destmation o T |
- [pe—— [— e
R R .

=]

s Detail Records - 1st Jan. 2013 to 28th Feb. 2013

o s ety o3

_images/realtime.png
Switch | Al Switches

Switch : 127.0.0.1

Calls

114

Powered by COR-Stats - Call Monioring & Analytics Software

_images/alert_remove_prefix_list.png
Select Alert Remove Prefix to change LN R +
al sewen

o,] J or 1 seictes
Ow Pt
o1 S s

_images/add_alarm.png
Type:
Condition: | aktn

Value: B

Aot oy =
Condition add

status: e =]

Email o send | ssmiges s corl.
Starms

vttt | st | [

_images/alert_report.png
At Records

Alarm
e
st
et
et
et
et
e
et
e

Report By Day

Calculated value.
o0
<000
so00
<000
000
7000
7000
000
o0
000

Alert Report i:: o aies.

Status
st
somsent
amsent
o sarmsent
Ao sent
samsent
o s sent
-
Ao sent

102 3] Newn

Powered by CDR.Stats - Call Moritoring & Analytics Sotuare.

Date
oee 32012 1152am.
Dec.2,2012 1120
oee.3,2012 20
Dec.2,2012 1120
oec.3,2012 1120
Dec.2,2012 1120
oec.3,2012 11%2am
Dee.2012 1120
oee 32012 20m
Dee.2012 1120

Q agvancea sesren

Total Alarms - 27

_images/daily_compare_report.png
Daily comparaison

Select date” Compare Switch Metric

‘20150@03 L] ‘ ‘ -4 days j ‘ Al switches j ‘ calls

Call Statistics - 8th April 2015 with previous days - Showing: Nbcalls

OGrouped @ Stacked ©127001 day 1 127001 day 2 @127.00.1 day 3 ©127001 day 4

10.00|

o000

Powered by CDR-Stats - Call Monitoring & Analytics Software.

_images/concurrent_call.png
=0

Swich
Al Swtcnes

Concurrent Calls

[Gom]

wo mm 2w

~Powered by GOR Stats - Cal Moniodng & Analytcs Software

_images/index.png
CDR-Stats call mrafic Analysis And Alert Solution

i) CDR

CDR-Stats is a multi-tenant application to browse, analyse and graph CDR (Call Detail Records) with automated
threat alerts for multiple switches and PBX systems.

Call Traffic Analysis and Alert Tools include :

* Dashboard: Overview of cal actvity
© Search GDR: Search, fier, display and export CDR

* Dally Comparison: Compare callrafic day on day

* RealTime Statistcs and Concurent Calls hrough the day.

Leam more »

* Call Country Report and World Map report
® Mail dally aggregated reports
® Threat Control: Detect abnormal call pattems

® Destination Alerts: Unexpected destination alerts

Licensing

Support

‘Star2Billing S.L. offers consultancy including installation, raining and customisation on
‘CDR-Stats. Contact s at cdr-stats@star2billing.com for more information

CDR-Stats is licensed under MPL V2, however an altemaiive license can be purchased if the
MPL V2 license s not suitable for your requirements.

Get Support » View Licensing details »

Powered by CDR-Stats - Call Monitoring & Analytics Software

_images/cdr_billing_report.png
CDR Billing Report

From* To* switch

2015-05-0100:00 201505212355

o 9

Daily Report - 1st May 2015 to 21st May 2015

© buy_cost ©104236.195.213_buy_cost @ _sellcost) 104.236.195.213_selcost
11631

100.00]

180y 2015 7 May 2015 18 May 2015 18 May 2015 19 May 2015 19 May 2015 May2015 20May 2015

8

of'May 2015 02May 2015 05 May 2015 07 May 2015 09May 2015 12 May 2015 14 May 2015 16 May 2015 18 May 2015 22May 2015

Total Calls 10 Most Called Countries

363925 Number Of Calls @ 0cals 1ST4Smindes | 000BC oosc

151630 Average Calls Per Hour - 1S21Cals 4825mindes 000BC oosc

59671130 Total Duraton 15 Calls 427549 minutes | 000BC o0sc

56231880 Total Bilsec Il 184Cals 416STiGminies 20462480 2815485C
4= 16CAls 42M0dSmindes 000BC oosc

02:44 ‘Average Call Duration

_images/whitelist_prefix_list.png
Select Whitelist to change W
e

Ow o couny
o1 o e

_images/alarm_report.png
Add Alarm Report

Atarm: e | &
Clcubted 10

vy

Status: msen <]

Sov s aroves | Save s comie o | [

_images/CDR-Stats-Architecture.png
Telecoms Switches

FreeSWITCH @ Asterisk
CDR-Pushed
COR Pusher Database
@ CHET T
being importe ana
PostgresaL 9.4 aggregated by CDR-Stats

<

CDR-Stats

PO cor Import oo Analysi o) Alert! Fraud

Store CDR Common

Pre Aggregate data for reporting :

* Check Blacklisted phone Calls / Disallowed Countries

* Monthly / Daily Report Aggregation
* Country Report Aggregation

CDR

PostgresaL 0.4

_images/destination_control.png
Trust Control control the blackiist / whitelist

Blacklist
[e
[a]
[a]
35569 Albaria

Blackist his dialcode

Whitelist

| Acton- |

Whiteist this country

elist this dialcode

_images/cdr_view.png
From*

2015-05-0100:00

al

Country

Al
Internal call
Afghanistan
Albania

@i search

Action~
Calidate

May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25

Bagins

cLp

426600628441 - Noemie Ziemann

428600781353 Leflani Kazey

429600943825 - Miss Marcelo

spinka

427600535210 - M. Ariane Kiein

436600252759 - Gunnar Stokes

432600859319 - Layla Windler

436600782843 - Marlyne Gaylord

436600495334 - Alessia Colller

427600658127 - Auckreanne

Kovacek

426600139284 - Bertrand Collins

To*

& 201505312359
Account code
Duration (secs)

Al switches

Calls Detail Records - 1st May 2015 to 31st May 2015

Destination Duration

428800828441 159

430800781353

425800943825

216

431800835210

428800252759 129

442800859619 53

28800782843 &7

446800495334 69

141800858127

436800139284 89

Bl
149

119

Hangup cause

RESPONSE _TO_STATUS_ENQUIRY

RESPONSE_TO_STATUS_ENQUIRY

DESTINATION_OUT_OF_ORDER

FACILITY_REJECTED

RESPONSE _TO_STATUS_ENQUIRY

FACILITY_REJECTED

INVALID_NUMBER_FORMAT

RESPONSE_TO_STATUS_ENQUIRY

DESTINATION_OUT_OF_ORDER

RESPONSE_TO_STATUS_ENQUIRY

Buy
Account rate
2 000
2 000
2 000
2 000
2 000
2 000
2 000
2 000
2 000
2 000

Buy

cost

000

000

000

000

000

000

000

000

000

000

Type
Bagins
Sell sell
rate cost
000 oo
000 oo
000 oo
000 oo
000 oo
000 oo
000 oo
000 oo
000 oo
000 oo

_images/admin_dashboard.png
£ CORSTATSV30.0.8ETA

Dashboard

General

User | Task Manager

Auth
Aamins
Customers
Groups
Sites
Sites

User_Profile

Accounteodes

Alert

Cdr_Alert
Alarms
Alarms report
Alert remove prefixes
Blackiist

Whitelist

BOOKMARKS APPLICATIONS ~

Recent Actions

#Add o Change
#Add o Change

#Add o Change

#Add o Change

#Add o Change

ov

#add o Change
#add o Change
#add o Change
2 Change
2 Change

ADMINISTRATION ~

CDR Voip
cdr
calls

Hangup causes

Voip Gateway
Voip_Gateway
Gateways

Providers

Voip Billing

Ban plans
Ban prefives.
Carrer plans
Carrerraes.
Retallplans,
Retailrates
VolP plans

Rebiling

CUSTOMER PANEL

@20

@20

@20

@20

#nca
#nca
#nca
#nca
#nca
#nca
#nca

#Change

#Change

#Change

#Change

change
change
change
change
change
change
change

Wielcome, root. () / Change password / Log out

Quick links ov

Goto CDR-Stats.org Change password Log out

Latest CDR-Stats News ov
& CDR-Stats V3 - coming soon April 7, 2015

£ COR-Stats V2 Screencast - Call & Vol? Jan. 29,2013

Woritoring

 COR-Stats Version 2 eleased Jan. 25, 2013

£ COR-Stats V2.00RC1 Dec 12,2012

© COR-Stats Beta 8 Released Dec 42012

Country Dialcode ov

Country Dialcode

Countries #Add o Change

Prefixes #Add o Change

Switch ov
Switch

Switches #Add o Change

_images/alarm_report_list.png
Select Alarm Report to change

a s
Omo Alarm Caculated vakue
[=]ES Al name 10000

onzs 02 1058

_images/add_prefix_into_blacklist.png
Blacklist by country

Country:

Spain

[select all prefixes

O
[=E3
[mE
400
[mE
4805
4605
[mE=

[mE

mE)
mE)
[mEY
Oases
mE
mEH
[ae1s
ase1s

[ses20

[ses2s
[ses2s
[mE=
[eszs
[ses20
[mE
[ses3s
[es3s

[mE=

a7
s
mE7=)

s

[sasss

Cass

[mE

Select country

[mE
4850
[mESY
[mE=
[mE=
[mE=
[Jsasss
[Jsasss

[sass7

[mE=
[mE=Y
4860
[mE
[mE
4863
4664
4865

4865

Blackist
the selected

prefies | Biacklst he selected
country

[Jsses7
[asess
[Jases0

Ossro

sz
Ossers

Ossers

[ee78
[mE=
[mE
[mE
sz
st
[mE
[mE

[mE

[mE
[mE
[mE
[mE
[Jsases
[mE
[sase7
[mE

[mE

_images/rates.png
CDR-Stats call mrafic Analysis And Alert Solution

—
=

| Acton~ |

v f— e
= = =
s [oo
= =
e i v
== e =
o i van
=5 e ==
i b
= e =
o i v

Total Records :202

_images/admin_dashboard1.png
£ CORSTATSV30.0.8ETA

Dashboard

General

User | Task Manager

Auth
Aamins
Customers
Groups
Sites
Sites

User_Profile

Accounteodes

Alert

Cdr_Alert
Alarms
Alarms report
Alert remove prefixes
Blackiist

Whitelist

BOOKMARKS APPLICATIONS ~

Recent Actions

#Add o Change
#Add o Change

#Add o Change

#Add o Change

#Add o Change

ov

#add o Change
#add o Change
#add o Change
2 Change
2 Change

ADMINISTRATION ~

CDR Voip
cdr
calls

Hangup causes

Voip Gateway
Voip_Gateway
Gateways

Providers

Voip Billing

Ban plans
Ban prefives.
Carrer plans
Carrerraes.
Retallplans,
Retailrates
VolP plans

Rebiling

CUSTOMER PANEL

@20

@20

@20

@20

#nca
#nca
#nca
#nca
#nca
#nca
#nca

#Change

#Change

#Change

#Change

change
change
change
change
change
change
change

Wielcome, root. () / Change password / Log out

Quick links ov

Goto CDR-Stats.org Change password Log out

Latest CDR-Stats News ov
& CDR-Stats V3 - coming soon April 7, 2015

£ COR-Stats V2 Screencast - Call & Vol? Jan. 29,2013

Woritoring

 COR-Stats Version 2 eleased Jan. 25, 2013

£ COR-Stats V2.00RC1 Dec 12,2012

© COR-Stats Beta 8 Released Dec 42012

Country Dialcode ov

Country Dialcode

Countries #Add o Change

Prefixes #Add o Change

Switch ov
Switch

Switches #Add o Change

_images/diagnostic.png
CDR-Stats call mrafic Analysis And Alert Solution

Diagnostic CDR-Stats

PostgreSQL server used to centralize CDRs and the aggregate reporting

[evone | django.db backends.postgresal_psycopa2
=3 locatbost

[orr] w2

| oasse waec capusher

= Yovvvvvery

o import

[comecnousums True

2900z

°

Powered by CDR-Stats - Call Monitoring & Analytics Software

_images/import-cdr-confirmation.png
Home » Import_cdr » CDRs Import » Import

Import
Below s a preview of data to be imported. If you are satisfied with the results, click ‘Confirm import"

Preview
switch | cdr_source_type | callid caller_id_number | caller_id_name destination_number | dialcode state channel starting_date duration | billsec progresssec answerse

New 127. 1 S6aaBlfe-7bdl-11e5: 904151440 CallerlDName +34798400122 4 2015-10-21 55 50
2230-5c5141620172 12:13:10
c9136e3a-7bd1-11e5- 904234320 CallerlDName +34798401111 34 2015-1021 15 10
2230-5c5141620172 12:33:15

New 127.001 1 cfaf8b6-7bdi-11e5: 901110380 CallerIDName +34650104877 4 2015-10-21 41 4
2230-5c5141620172 12:53:16

New 127, 1 3c64a138-7bd2-11e5- 904234320 CallerIDName +34798401111 2015-1021 16 u
2230-5c5141620172 12:53:16
41620dd8-7bd2-11e5- 904231111 CallerIDName +34650104877 34 2015-1021 8 s

2230-5c5141620172 12:53:16

_static/images/admin/import-cdr-confirmation.png
Home » Import_cdr » CDRs Import » Import

Import
Below s a preview of data to be imported. If you are satisfied with the results, click ‘Confirm import"

Preview
switch | cdr_source_type | callid caller_id_number | caller_id_name destination_number | dialcode state channel starting_date duration | billsec progresssec answerse

New 127. 1 S6aaBlfe-7bdl-11e5: 904151440 CallerlDName +34798400122 4 2015-10-21 55 50
2230-5c5141620172 12:13:10
c9136e3a-7bd1-11e5- 904234320 CallerlDName +34798401111 34 2015-1021 15 10
2230-5c5141620172 12:33:15

New 127.001 1 cfaf8b6-7bdi-11e5: 901110380 CallerIDName +34650104877 4 2015-10-21 41 4
2230-5c5141620172 12:53:16

New 127, 1 3c64a138-7bd2-11e5- 904234320 CallerIDName +34798401111 2015-1021 16 u
2230-5c5141620172 12:53:16
41620dd8-7bd2-11e5- 904231111 CallerIDName +34650104877 34 2015-1021 8 s

2230-5c5141620172 12:53:16

_images/model_cdr-stats.png
django.contrib.admin

Entry

nient_type (logenty)

ussr (bgentry)

Customer

usar_permesions (user)

usar_permesions (user)

django.contrib.auth

Message

lsv (_message s=t)

groups (user) \groups (user)

rmisions (group)

foroups (user)

usar_permesions (user)

ntent_typs (permission)

—

user_profile

admin_tools.menu

Tear (usarprofis)

tastypie

Apikey

ApiAccass.

Toor (api_tey)

admin_tools.dashboard

dPreferences.

NoticeQueusBatch

notification

ot (dashboardpreterances)

nder (sont_ofes)

Tocipint (1eckved_moiEes)

oot (notiesetig)

st obssrvediom)

nofice_type (notie)

otie_type (noticessting)

NoticeType

‘Obsarvaditem

Totice_typs (observediem)

ntent_typs (obssrvediem)

cdr_alert

AlarmReport

jarm (aarmreport)

Alarm

country_dialcode

untry_i (prefi)

ountry

MigrationHistory

AsteriskCDR

cdr

jteh_i (asterishod)

django.contrib.sites

dicelery

PeriodicTask
to
Pey

Imunwnamw {nterval (periodictask)

CrontabSchedule

TaskSetMeta

ier (tasistate)

harState

Taskieta

django.contrib.sessions

_static/images/admin/add_alert_remove_prefix.png
Add Alert Remove Prefix
wabel: £

profn: -

Sove s rcver | Sove v conre s | [

_static/images/admin/hangup_cause_list.png
Select Hangupcause to change

Q

000000 O00O OO0 00

o

2

5

0] oot ot seteces
fr=s

1 oo s Ut s e
sy

2 o mours s ner oot s s ek
ey

3 o poure pesTuATn oo n gm0 551

PRp—— p——

7 cAupwamDeD panERED ot by b
e 550

15 vor_ e s catcanma 035

v s e

1 voLusen response -

5 o s P —
i

& susscRe s prese———

2 cwusec Er—r

2 e cuen pr——

REDRECTION_T0 N DESTITON

‘DG FouTHNG ERROR

oescrpton
Ty v e e e e . T s i e o e e . e s 100

i s s oo pary e s, s by o A A L e e 55

0 i et s o o e et P s e e
T o g 1o e A ek S S o A P s e A e Bk i o1t .
i o o o e N S e

0 s s oy oo e s 4 1 o s e S s T
st ot et ey e e s 5
M —
i g ke o 5 v

o come s P o e ' 81 et e e s

e e it by D . 5 e 5117 D AT 1 B

0 i ety st e st i : et el WO e s o

0t i ooy o e s 2 e 8 S R .t T 1t
e e G S o o e v e et

T e i st g ottt i st o el 5
i e e b St S e 15 USER N FECRTERED 1 e kst

s s i 1 s o 10 e 140 o o ch s P cnen serdny
o e Ty S e S S, o S e o 5 s 5 5oy S i
T S g e s b ot b ST e e

i e sttty et cld e i by hecta sty e s T sl i i 5
i i D et st B i B, . S e ot e s

sy g S s 0 4 e Ry g s otk 4p 08 o e e
T e S S ity

0o s vttt s ot b o Tl ocorg s ks e 6 e g
R e P e e s Rt e e e e

_static/images/admin/blacklist_prefix_list.png
Select Blacklist to change

3 [o—
o1 B)

_static/images/admin/import-cdr.png
Home » Import_cdr > CDRs Import » Import

Import

“This importer will import the following fields: switch , cdr_source_type , callid , caller_id_number , caller_id_name , destination number , dialcode , state , channel ,
starting date , duration , billsec, progresssec , answersec , waitsec , hangup_cause_id , hangup_cause , direction, country code , accountcode , buy_rate ,
buy_cost , sell_rate , sell_cost , extradata

File to import: CORImport-2015-10-26.csv

Format: = 4

_static/images/admin/alarm_report.png
Add Alarm Report

Atarm: e | &
Clcubted 10

vy

Status: msen <]

Sov s aroves | Save s comie o | [

_static/images/admin/add_alarm.png
Type:
Condition: | aktn

Value: B

Aot oy =
Condition add

status: e =]

Email o send | ssmiges s corl.
Starms

vttt | st | [

_static/images/admin/admin_dashboard.png
£ CORSTATSV30.0.8ETA

Dashboard

General

User | Task Manager

Auth
Aamins
Customers
Groups
Sites
Sites

User_Profile

Accounteodes

Alert

Cdr_Alert
Alarms
Alarms report
Alert remove prefixes
Blackiist

Whitelist

BOOKMARKS APPLICATIONS ~

Recent Actions

#Add o Change
#Add o Change

#Add o Change

#Add o Change

#Add o Change

ov

#add o Change
#add o Change
#add o Change
2 Change
2 Change

ADMINISTRATION ~

CDR Voip
cdr
calls

Hangup causes

Voip Gateway
Voip_Gateway
Gateways

Providers

Voip Billing

Ban plans
Ban prefives.
Carrer plans
Carrerraes.
Retallplans,
Retailrates
VolP plans

Rebiling

CUSTOMER PANEL

@20

@20

@20

@20

#nca
#nca
#nca
#nca
#nca
#nca
#nca

#Change

#Change

#Change

#Change

change
change
change
change
change
change
change

Wielcome, root. () / Change password / Log out

Quick links ov

Goto CDR-Stats.org Change password Log out

Latest CDR-Stats News ov
& CDR-Stats V3 - coming soon April 7, 2015

£ COR-Stats V2 Screencast - Call & Vol? Jan. 29,2013

Woritoring

 COR-Stats Version 2 eleased Jan. 25, 2013

£ COR-Stats V2.00RC1 Dec 12,2012

© COR-Stats Beta 8 Released Dec 42012

Country Dialcode ov

Country Dialcode

Countries #Add o Change

Prefixes #Add o Change

Switch ov
Switch

Switches #Add o Change

_static/images/admin/whitelist_prefix_list.png
Select Whitelist to change W
e

Ow o couny
o1 o e

_static/images/admin/add_prefix_into_blacklist.png
Blacklist by country

Country:

Spain

[select all prefixes

O
[=E3
[mE
400
[mE
4805
4605
[mE=

[mE

mE)
mE)
[mEY
Oases
mE
mEH
[ae1s
ase1s

[ses20

[ses2s
[ses2s
[mE=
[eszs
[ses20
[mE
[ses3s
[es3s

[mE=

a7
s
mE7=)

s

[sasss

Cass

[mE

Select country

[mE
4850
[mESY
[mE=
[mE=
[mE=
[Jsasss
[Jsasss

[sass7

[mE=
[mE=Y
4860
[mE
[mE
4863
4664
4865

4865

Blackist
the selected

prefies | Biacklst he selected
country

[Jsses7
[asess
[Jases0

Ossro

sz
Ossers

Ossers

[ee78
[mE=
[mE
[mE
sz
st
[mE
[mE

[mE

[mE
[mE
[mE
[mE
[Jsases
[mE
[sase7
[mE

[mE

_static/images/admin/alarm_report_list.png
Select Alarm Report to change

a s
Omo Alarm Caculated vakue
[=]ES Al name 10000

onzs 02 1058

_images/country_report.png
Country report

From® To Switch
201505210000 & 201505212355 L] Al switches
Country Metric
Al a calls
Internal cail
Alghanistan
Abania <

21st May 2015 to 21st May 2015 - Showing: Nbcalls
@Canada © Cobmbia @Kenya © Unied States

10.00)

iyt 2Nt ZiNeis 2iMe20is 2iMey205 2215 ZiNay2is ZiMay20is 21May2015 21 May201s
“000)

21 May 2015 21 May 2015 21 May 2015 21 May 2015 21May 2015 21 May 2015 21 May 2015 21 May 2015 21 May 2015 21 May 2015

Total Calls 10 Most Called Countries
259 Number Of Calls m 2cals w7ES2mines omBc omsc
100 Average Calls Per Hour = scas 0000 minutes omBc omsc
88612 Total Duration © scas 0000 mintes omBc omsc
= 2cas 0000 minutes oo0BC oo0sc

88612 Total Billsec

_images/alert_setting.png
x| D

[s]

Name
et

e
e

Period
ot

ek
ony

Type
4SR (Answer oo Raio)

AL0C (average Langeh of ca)

AL0C (Average Langth of ca)

Alerts i< o siers

Condition
ncresse by moe tran
Parcaniage cecrasse oy o ran

s greaer

Value
1000

200
1000

‘Powered by CDR:Stats - Cal Monitoring & Analytis Softuars

R

Date
Dec 13,201, 12480m

Dec 13,201, 2480

Dec 13,2012, 12480m.

Action
@e
@e
@e

Tatal Alarms : 3

_images/add_alert_remove_prefix.png
Add Alert Remove Prefix
wabel: £

profn: -

Sove s rcver | Sove v conre s | [

_images/world_map_II.png
World report

Country Calls Detall Country List

From* To* Switch

20150521 0000 & cosos2izess & wiowicnes -

World Map Report - 21st May 2015 to 21st May 2015

Country calls Duration Buy cost Sellcost
EKenja 242 Calls 1476:52 minutes 00 00
5 United States scalls 0000 minutes 00 00
el Canada scalls 0000 minutes 00 00
i Colombia 2calls 0000 minutes 00 00

Powered by CDR-Stats - Call Monitoring & Analytics Software

_images/import-cdr.png
Home » Import_cdr > CDRs Import » Import

Import

“This importer will import the following fields: switch , cdr_source_type , callid , caller_id_number , caller_id_name , destination number , dialcode , state , channel ,
starting date , duration , billsec, progresssec , answersec , waitsec , hangup_cause_id , hangup_cause , direction, country code , accountcode , buy_rate ,
buy_cost , sell_rate , sell_cost , extradata

File to import: CORImport-2015-10-26.csv

Format: = 4

_images/call_simulator.png
Call Simulator

J— —
[snteoras N d

carcon setatin neatre

. - -

Powered by CDR-Stats - Call Monitoring & Analytics Software

_images/dashboard1.png
Call Statistics : 21st May 2015

@ Cals (et axis) Duration (right axis) @ Bilsec (ight)
© Buy cost (right axs) @ Sel cost (right axs)

o -
80 500
7
o <0
P

0
«
% -
2

00
w
ko o o0 212 w1 T3 w5 w3 ww b
i Tos o0 212 o %o e s T

Call Totals Report Countries Report
'@NORMAL_CLEARING ‘@ NO_ANSWER Canada United States unknown @Kenya @ Colombia

United ST

@NORMAL_UNSPECIFIED @ NO_USER_RESPONSE

RECER TMER Do

NORMAL_TEMPORARY.

_images/mail_report.png
Emallto send the report

Preview of the mail report :

CDR-Stats report of 20th May 2015

Last10 Calls
Date ciid Destination Duration Bilisec Hangup cause Account Buycost Sellcost

May 20,2015, micight +30600306089 - Jaciyn Jacobs 40800006089 0051 0041 DESTINATION OUT_OF ORDER 2 o000 oooo0 EEE] W
May 20,2015, micight | +29600941082 - Coty Gleason 2080041082 0452 0442 INVALID.NUMBER FORMAT 2 000000 000000 4= W
May 20,2015, micight | +27600731687 - Nadia Howe. 27800731687 0326 0316 DESTINATION OUT OF ORDER 2 o000 oooc0 B W
May 20,2015, michight | +34600207728 - Royce Herzog 48800207728 0159 0149 RESPONSE TO_STATUS ENQURY 2 000000 000000] W
May 20,2015, michighnt | 37600719088 - FrancescaRuecker +41800719088 0416 0405 DESTINATION OUT OF ORDER 2 o000 o000 DA m
May 20,2015, micight | +35600765761 - Ms. Kory VonRucden +31800765761 0312 0302 INVALID_NUMBER FORMAT 2 o000 oo e W
May 20,2015, michight | +27600839036 - Zocy Schamberger +356008%9036 OT:16 0105 DESTINATION_OUT OF ORDER 2 000000 000000 4= W
May 20,2015, micight | +38600884774 - May Goldner 436300884774 0047 0037 INVALID.NUMBER FORMAT 2 o000 00000 =6 W
May 20,2015, michight | +26600323627 - Tatyana Dickens. 30800020627 0323 0313 FACIITY_REJECTED 2 o000 oo = W

May 20,2015, midnight +27600426811 - Mrs. Carolyn Kemmer +31800428811 0254 0244 RESPONSE_TO_STATUS_ENQURY 2 000000 00000 | I=ef W

_images/blacklist_prefix_list.png
Select Blacklist to change

3 [o—
o1 B)

_static/images/api-playground/list_of_api.png
CDR-Stats APIs Browser playground

No Name

1 Hangupcause
2 Switch

3 car

Powered by CDR-Stats - Call Monitoring & Analytics Software.

_static/images/api-playground/switch_playground.png
Switch API Playground
/switch/

This resource allows you to manage switchs.

| GET /apiivi/switch/

Request

GET /api/v1/switch/
Content-Type: application/json; charset=utf-8

Response Status
0K (200)

Response Headers

Date: Fri, 19 Oct 2012 10:23:46 GMT

Server: WSGIServer/6.1 Python/2.7.3

Vary: Accept-Language, Cookie

Content-Type: application/json; charset=utf-8
Content-Language: en

Cache-Control: no-cache

Response Body
{*meta”: {"limit “next”: null
“objects”: [{"id . "ipaddress
000c2925d15f", "name": “127.6.0.1"

"offset": @, "previous’
"127.0.0.1", "key_uuid
“resource_uri"

Give feedback about this response.

| GET /apivi/switch/{switch-id)/

URL Parameters

switch-

Data Parameters

name: ipaddress:

localhost | [192.168.1.4

Returns all switchs

null, "total_count”: 4},
"C8044518-183f - 11e2-964f -
‘api/vl/switch/1/"}1}

Returns a specific switch

1
GET|
[POST | japivtiswichy Cesesneuswin

POST

URL Parameters

switch-id:
Data Parameters

name: ipaddress:

localhost | [192.168.1.4

|DELETE. /apivi/switch/swich-io)/
URL Parameters

switch-id:

I
DELETE

_static/images/admin/alert_remove_prefix_list.png
Select Alert Remove Prefix to change LN R +
al sewen

o,] J or 1 seictes
Ow Pt
o1 S s

_static/images/admin/admin_cdr_view.png
From oLa o 2130028 Destmation o T |
- [pe—— [— e
R R .

=]

s Detail Records - 1st Jan. 2013 to 28th Feb. 2013

o s ety o3

_images/hangup_cause_list.png
Select Hangupcause to change

Q

000000 O00O OO0 00

o

2

5

0] oot ot seteces
fr=s

1 oo s Ut s e
sy

2 o mours s ner oot s s ek
ey

3 o poure pesTuATn oo n gm0 551

PRp—— p——

7 cAupwamDeD panERED ot by b
e 550

15 vor_ e s catcanma 035

v s e

1 voLusen response -

5 o s P —
i

& susscRe s prese———

2 cwusec Er—r

2 e cuen pr——

REDRECTION_T0 N DESTITON

‘DG FouTHNG ERROR

oescrpton
Ty v e e e e . T s i e o e e . e s 100

i s s oo pary e s, s by o A A L e e 55

0 i et s o o e et P s e e
T o g 1o e A ek S S o A P s e A e Bk i o1t .
i o o o e N S e

0 s s oy oo e s 4 1 o s e S s T
st ot et ey e e s 5
M —
i g ke o 5 v

o come s P o e ' 81 et e e s

e e it by D . 5 e 5117 D AT 1 B

0 i ety st e st i : et el WO e s o

0t i ooy o e s 2 e 8 S R .t T 1t
e e G S o o e v e et

T e i st g ottt i st o el 5
i e e b St S e 15 USER N FECRTERED 1 e kst

s s i 1 s o 10 e 140 o o ch s P cnen serdny
o e Ty S e S S, o S e o 5 s 5 5oy S i
T S g e s b ot b ST e e

i e sttty et cld e i by hecta sty e s T sl i i 5
i i D et st B i B, . S e ot e s

sy g S s 0 4 e Ry g s otk 4p 08 o e e
T e S S ity

0o s vttt s ot b o Tl ocorg s ks e 6 e g
R e P e e s Rt e e e e

_images/cdr_overview.png
From* To* Switch Metric.

. 9 [9

20150521 00:00

201505212355

Hourly Chart - 21st May 2015 to 21st May 2015 - Showing: Nbcalls

@seret 0142021422 @16242.1428
4700,
4000
30.00|
2000|
1000
00
21 iy 5 02am 21May1505AM 21MayT50BAM 21May13TAM 21May1514PM 21May1s16PM 21May1s19PM 21May1522PM 22May 1501AM
400]
2000|
000
21 My 15 02aM 21May 505AM Z1MayT50BAM 21May 15 AM 21May 16 14PM 21May 15 16PM 21May1519PM 21May1522PM 22May 1501AM
Total Calls 10 Most Called Countries

259 Number Of Calls = owcals w7Es2mines omBc omsc

100 Average Calls Per Hour = scas 0000 mintes omBc omsc

88612 Total Duration © scas 0000 mintes omBc omsc

88612 Total Bilsec - 2cais 0000 minutes omBc omsc

05102 Average Call Duration

000 Total Buy Cost

_images/alarm_list.png
Select Alarm to change

a
Acton =1 (So] 0011 seectea

Do e ponoa e e Ste Conaron
SR o AL0C hverage Lot o 1000 e st

_images/dashboard.png
Call Statistics : 21st May 2015

@ Cals (et axis) Duration (right axis) @ Bilsec (ight)
© Buy cost (right axs) @ Sel cost (right axs)

o -
80 500
7
o <0
P

0
«
% -
2

00
w
ko o o0 212 w1 T3 w5 w3 ww b
i Tos o0 212 o %o e s T

Call Totals Report Countries Report
'@NORMAL_CLEARING ‘@ NO_ANSWER Canada United States unknown @Kenya @ Colombia

United ST

@NORMAL_UNSPECIFIED @ NO_USER_RESPONSE

RECER TMER Do

NORMAL_TEMPORARY.

_images/switch_list.png
Select Switch to change

Q e

Actr, Shlia] oot seces

=13 st ey
I w001

_static/minus.png

_static/up-pressed.png

_images/daily_compare_report1.png
Daily comparaison

Select date” Compare Switch Metric

‘20150@03 L] ‘ ‘ -4 days j ‘ Al switches j ‘ calls

Call Statistics - 8th April 2015 with previous days - Showing: Nbcalls

OGrouped @ Stacked ©127001 day 1 127001 day 2 @127.00.1 day 3 ©127001 day 4

10.00|

o000

Powered by CDR-Stats - Call Monitoring & Analytics Software.

_images/list_of_api.png
CDR-Stats APIs Browser playground

No Name

1 Hangupcause
2 Switch

3 car

Powered by CDR-Stats - Call Monitoring & Analytics Software.

_static/images/customer/country_report.png
Country report

From® To Switch
201505210000 & 201505212355 L] Al switches
Country Metric
Al a calls
Internal cail
Alghanistan
Abania <

21st May 2015 to 21st May 2015 - Showing: Nbcalls
@Canada © Cobmbia @Kenya © Unied States

10.00)

iyt 2Nt ZiNeis 2iMe20is 2iMey205 2215 ZiNay2is ZiMay20is 21May2015 21 May201s
“000)

21 May 2015 21 May 2015 21 May 2015 21 May 2015 21May 2015 21 May 2015 21 May 2015 21 May 2015 21 May 2015 21 May 2015

Total Calls 10 Most Called Countries
259 Number Of Calls m 2cals w7ES2mines omBc omsc
100 Average Calls Per Hour = scas 0000 minutes omBc omsc
88612 Total Duration © scas 0000 mintes omBc omsc
= 2cas 0000 minutes oo0BC oo0sc

88612 Total Billsec

_static/images/customer/mail_report.png
Emallto send the report

Preview of the mail report :

CDR-Stats report of 20th May 2015

Last10 Calls
Date ciid Destination Duration Bilisec Hangup cause Account Buycost Sellcost

May 20,2015, micight +30600306089 - Jaciyn Jacobs 40800006089 0051 0041 DESTINATION OUT_OF ORDER 2 o000 oooo0 EEE] W
May 20,2015, micight | +29600941082 - Coty Gleason 2080041082 0452 0442 INVALID.NUMBER FORMAT 2 000000 000000 4= W
May 20,2015, micight | +27600731687 - Nadia Howe. 27800731687 0326 0316 DESTINATION OUT OF ORDER 2 o000 oooc0 B W
May 20,2015, michight | +34600207728 - Royce Herzog 48800207728 0159 0149 RESPONSE TO_STATUS ENQURY 2 000000 000000] W
May 20,2015, michighnt | 37600719088 - FrancescaRuecker +41800719088 0416 0405 DESTINATION OUT OF ORDER 2 o000 o000 DA m
May 20,2015, micight | +35600765761 - Ms. Kory VonRucden +31800765761 0312 0302 INVALID_NUMBER FORMAT 2 o000 oo e W
May 20,2015, michight | +27600839036 - Zocy Schamberger +356008%9036 OT:16 0105 DESTINATION_OUT OF ORDER 2 000000 000000 4= W
May 20,2015, micight | +38600884774 - May Goldner 436300884774 0047 0037 INVALID.NUMBER FORMAT 2 o000 00000 =6 W
May 20,2015, michight | +26600323627 - Tatyana Dickens. 30800020627 0323 0313 FACIITY_REJECTED 2 o000 oo = W

May 20,2015, midnight +27600426811 - Mrs. Carolyn Kemmer +31800428811 0254 0244 RESPONSE_TO_STATUS_ENQURY 2 000000 00000 | I=ef W

_static/images/customer/alert_setting.png
x| D

[s]

Name
et

e
e

Period
ot

ek
ony

Type
4SR (Answer oo Raio)

AL0C (average Langeh of ca)

AL0C (Average Langth of ca)

Alerts i< o siers

Condition
ncresse by moe tran
Parcaniage cecrasse oy o ran

s greaer

Value
1000

200
1000

‘Powered by CDR:Stats - Cal Monitoring & Analytis Softuars

R

Date
Dec 13,201, 12480m

Dec 13,201, 2480

Dec 13,2012, 12480m.

Action
@e
@e
@e

Tatal Alarms : 3

_static/images/customer/dashboard.png
Call Statistics : 21st May 2015

@ Cals (et axis) Duration (right axis) @ Bilsec (ight)
© Buy cost (right axs) @ Sel cost (right axs)

o -
80 500
7
o <0
P

0
«
% -
2

00
w
ko o o0 212 w1 T3 w5 w3 ww b
i Tos o0 212 o %o e s T

Call Totals Report Countries Report
'@NORMAL_CLEARING ‘@ NO_ANSWER Canada United States unknown @Kenya @ Colombia

United ST

@NORMAL_UNSPECIFIED @ NO_USER_RESPONSE

RECER TMER Do

NORMAL_TEMPORARY.

_static/images/customer/call_simulator.png
Call Simulator

J— —
[snteoras N d

carcon setatin neatre

. - -

Powered by CDR-Stats - Call Monitoring & Analytics Software

_static/images/customer/cdr_overview.png
From* To* Switch Metric.

. 9 [9

20150521 00:00

201505212355

Hourly Chart - 21st May 2015 to 21st May 2015 - Showing: Nbcalls

@seret 0142021422 @16242.1428
4700,
4000
30.00|
2000|
1000
00
21 iy 5 02am 21May1505AM 21MayT50BAM 21May13TAM 21May1514PM 21May1s16PM 21May1s19PM 21May1522PM 22May 1501AM
400]
2000|
000
21 My 15 02aM 21May 505AM Z1MayT50BAM 21May 15 AM 21May 16 14PM 21May 15 16PM 21May1519PM 21May1522PM 22May 1501AM
Total Calls 10 Most Called Countries

259 Number Of Calls = owcals w7Es2mines omBc omsc

100 Average Calls Per Hour = scas 0000 mintes omBc omsc

88612 Total Duration © scas 0000 mintes omBc omsc

88612 Total Bilsec - 2cais 0000 minutes omBc omsc

05102 Average Call Duration

000 Total Buy Cost

_static/images/customer/cdr_data.png
call-date v
April 24,2012,622 am.

April 24,2012, 621 am.

clid
78191200 - 78191200

57682127 - 57662127

Destination
1643145

4414367

Dul
00:00

0000

Bl
00:00

00:00

Hangup cause
NORMAL_CLEARNG

USER_BUSY

Account
1000

1000

il

_static/images/customer/diagnostic.png
CDR-Stats call mrafic Analysis And Alert Solution

Diagnostic CDR-Stats

PostgreSQL server used to centralize CDRs and the aggregate reporting

[evone | django.db backends.postgresal_psycopa2
=3 locatbost

[orr] w2

| oasse waec capusher

= Yovvvvvery

o import

[comecnousums True

2900z

°

Powered by CDR-Stats - Call Monitoring & Analytics Software

_static/images/customer/cdr_view.png
From*

2015-05-0100:00

al

Country

Al
Internal call
Afghanistan
Albania

@i search

Action~
Calidate

May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25
May 20, 2015, 11:25

Bagins

cLp

426600628441 - Noemie Ziemann

428600781353 Leflani Kazey

429600943825 - Miss Marcelo

spinka

427600535210 - M. Ariane Kiein

436600252759 - Gunnar Stokes

432600859319 - Layla Windler

436600782843 - Marlyne Gaylord

436600495334 - Alessia Colller

427600658127 - Auckreanne

Kovacek

426600139284 - Bertrand Collins

To*

& 201505312359
Account code
Duration (secs)

Al switches

Calls Detail Records - 1st May 2015 to 31st May 2015

Destination Duration

428800828441 159

430800781353

425800943825

216

431800835210

428800252759 129

442800859619 53

28800782843 &7

446800495334 69

141800858127

436800139284 89

Bl
149

119

Hangup cause

RESPONSE _TO_STATUS_ENQUIRY

RESPONSE_TO_STATUS_ENQUIRY

DESTINATION_OUT_OF_ORDER

FACILITY_REJECTED

RESPONSE _TO_STATUS_ENQUIRY

FACILITY_REJECTED

INVALID_NUMBER_FORMAT

RESPONSE_TO_STATUS_ENQUIRY

DESTINATION_OUT_OF_ORDER

RESPONSE_TO_STATUS_ENQUIRY

Buy
Account rate
2 000
2 000
2 000
2 000
2 000
2 000
2 000
2 000
2 000
2 000

Buy

cost

000

000

000

000

000

000

000

000

000

000

Type
Bagins
Sell sell
rate cost
000 oo
000 oo
000 oo
000 oo
000 oo
000 oo
000 oo
000 oo
000 oo
000 oo

_static/images/customer/world_map_II.png
World report

Country Calls Detall Country List

From* To* Switch

20150521 0000 & cosos2izess & wiowicnes -

World Map Report - 21st May 2015 to 21st May 2015

Country calls Duration Buy cost Sellcost
EKenja 242 Calls 1476:52 minutes 00 00
5 United States scalls 0000 minutes 00 00
el Canada scalls 0000 minutes 00 00
i Colombia 2calls 0000 minutes 00 00

Powered by CDR-Stats - Call Monitoring & Analytics Software

_static/images/customer/rates.png
CDR-Stats call mrafic Analysis And Alert Solution

—
=

| Acton~ |

v f— e
= = =
s [oo
= =
e i v
== e =
o i van
=5 e ==
i b
= e =
o i v

Total Records :202

_images/add_prefix_into_whitelist.png
Whitelist by country
Country: 5|

Select country

[select all prefixes
o3 oa7 Q3341 [Qoaro [Joars [Joar7 [Joars [J9379

Blacklst the selected prefixes | Biackist the selected country

_images/switch_playground.png
Switch API Playground
/switch/

This resource allows you to manage switchs.

| GET /apiivi/switch/

Request

GET /api/v1/switch/
Content-Type: application/json; charset=utf-8

Response Status
0K (200)

Response Headers

Date: Fri, 19 Oct 2012 10:23:46 GMT

Server: WSGIServer/6.1 Python/2.7.3

Vary: Accept-Language, Cookie

Content-Type: application/json; charset=utf-8
Content-Language: en

Cache-Control: no-cache

Response Body
{*meta”: {"limit “next”: null
“objects”: [{"id . "ipaddress
000c2925d15f", "name": “127.6.0.1"

"offset": @, "previous’
"127.0.0.1", "key_uuid
“resource_uri"

Give feedback about this response.

| GET /apivi/switch/{switch-id)/

URL Parameters

switch-

Data Parameters

name: ipaddress:

localhost | [192.168.1.4

Returns all switchs

null, "total_count”: 4},
"C8044518-183f - 11e2-964f -
‘api/vl/switch/1/"}1}

Returns a specific switch

1
GET|
[POST | japivtiswichy Cesesneuswin

POST

URL Parameters

switch-id:
Data Parameters

name: ipaddress:

localhost | [192.168.1.4

|DELETE. /apivi/switch/swich-io)/
URL Parameters

switch-id:

I
DELETE

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

_static/images/customer/index.png
CDR-Stats call mrafic Analysis And Alert Solution

i) CDR

CDR-Stats is a multi-tenant application to browse, analyse and graph CDR (Call Detail Records) with automated
threat alerts for multiple switches and PBX systems.

Call Traffic Analysis and Alert Tools include :

* Dashboard: Overview of cal actvity
© Search GDR: Search, fier, display and export CDR

* Dally Comparison: Compare callrafic day on day

* RealTime Statistcs and Concurent Calls hrough the day.

Leam more »

* Call Country Report and World Map report
® Mail dally aggregated reports
® Threat Control: Detect abnormal call pattems

® Destination Alerts: Unexpected destination alerts

Licensing

Support

‘Star2Billing S.L. offers consultancy including installation, raining and customisation on
‘CDR-Stats. Contact s at cdr-stats@star2billing.com for more information

CDR-Stats is licensed under MPL V2, however an altemaiive license can be purchased if the
MPL V2 license s not suitable for your requirements.

Get Support » View Licensing details »

Powered by CDR-Stats - Call Monitoring & Analytics Software

_static/images/customer/alert_report.png
At Records

Alarm
e
st
et
et
et
et
e
et
e

Report By Day

Calculated value.
o0
<000
so00
<000
000
7000
7000
000
o0
000

Alert Report i:: o aies.

Status
st
somsent
amsent
o sarmsent
Ao sent
samsent
o s sent
-
Ao sent

102 3] Newn

Powered by CDR.Stats - Call Moritoring & Analytics Sotuare.

Date
oee 32012 1152am.
Dec.2,2012 1120
oee.3,2012 20
Dec.2,2012 1120
oec.3,2012 1120
Dec.2,2012 1120
oec.3,2012 11%2am
Dee.2012 1120
oee 32012 20m
Dee.2012 1120

Q agvancea sesren

Total Alarms - 27

_static/images/customer/daily_compare_report.png
Daily comparaison

Select date” Compare Switch Metric

‘20150@03 L] ‘ ‘ -4 days j ‘ Al switches j ‘ calls

Call Statistics - 8th April 2015 with previous days - Showing: Nbcalls

OGrouped @ Stacked ©127001 day 1 127001 day 2 @127.00.1 day 3 ©127001 day 4

10.00|

o000

Powered by CDR-Stats - Call Monitoring & Analytics Software.

_static/images/customer/cdr_billing_report.png
CDR Billing Report

From* To* switch

2015-05-0100:00 201505212355

o 9

Daily Report - 1st May 2015 to 21st May 2015

© buy_cost ©104236.195.213_buy_cost @ _sellcost) 104.236.195.213_selcost
11631

100.00]

180y 2015 7 May 2015 18 May 2015 18 May 2015 19 May 2015 19 May 2015 May2015 20May 2015

8

of'May 2015 02May 2015 05 May 2015 07 May 2015 09May 2015 12 May 2015 14 May 2015 16 May 2015 18 May 2015 22May 2015

Total Calls 10 Most Called Countries

363925 Number Of Calls @ 0cals 1ST4Smindes | 000BC oosc

151630 Average Calls Per Hour - 1S21Cals 4825mindes 000BC oosc

59671130 Total Duraton 15 Calls 427549 minutes | 000BC o0sc

56231880 Total Bilsec Il 184Cals 416STiGminies 20462480 2815485C
4= 16CAls 42M0dSmindes 000BC oosc

02:44 ‘Average Call Duration

_static/images/customer/destination_control.png
Trust Control control the blackiist / whitelist

Blacklist
[e
[a]
[a]
35569 Albaria

Blackist his dialcode

Whitelist

| Acton- |

Whiteist this country

elist this dialcode

_static/images/customer/concurrent_call.png
=0

Swich
Al Swtcnes

Concurrent Calls

[Gom]

wo mm 2w

~Powered by GOR Stats - Cal Moniodng & Analytcs Software

_static/images/admin/switch_list.png
Select Switch to change

Q e

Actr, Shlia] oot seces

=13 st ey
I w001

_static/images/admin/add_prefix_into_whitelist.png
Whitelist by country
Country: 5|

Select country

[select all prefixes
o3 oa7 Q3341 [Qoaro [Joars [Joar7 [Joars [J9379

Blacklst the selected prefixes | Biackist the selected country

_static/images/customer/realtime.png
Switch | Al Switches

Switch : 127.0.0.1

Calls

114

Powered by COR-Stats - Call Monioring & Analytics Software

_static/images/admin/alarm_list.png
Select Alarm to change

a
Acton =1 (So] 0011 seectea

Do e ponoa e e Ste Conaron
SR o AL0C hverage Lot o 1000 e st

_static/images/customer/world_map_I.png
World report

Country Calls Detail |~ Country List

From® To* Switch

2015-02-23 00:00 B 2015-04-07 23:55 L] Al switches j

‘World Map Report - 23rd Feb. 2015 to 7th April 2015

S

Call Report Data

Hover over a country

SR

)

Poccus

1

México.

0-10 Calls
10-30 Calls
30-40 Calls
indonesia 40-60 Calls
60-70 Calls
70-80 Calls
80-100 Calls
Australia 100+ Calls

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

_static/file.png

_static/ajax-loader.gif

_static/comment-bright.png

